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ABSTRACT
Deformation analysis is crucial in many applications, espe-
cially in medical image analysis. Analyzing the deformation
pattern of anatomical structures provides important informa-
tion for disease analysis. With degraded images or uncer-
tainties, getting a deterministic solution of the deformation
is challenging. In some cases, there may also be multiple so-
lutions with different probabilities. As such, it is important
to analyze the probability distribution of deformations, given
data information with uncertainty. In this work, we propose
to use computational Quasiconformal (QC) Teichmuller theo-
ries to parameterize the space of deformations. A distribution
over the space of special features, called the QC features, can
be computed and applied for deformation analysis. Extensive
experiments are carried out on both synthetic data and real
medical images, which demonstrate the efficacy of the pro-
posed framework.

Index Terms— Non-deterministic, deformation analysis,
conformal structure, quasiconformal, medical image analysis

1. INTRODUCTION

Medical image analysis is a crucial procedure for disease
analysis and disease diagnosis. To analyze anatomical struc-
tures captured in medical images, their shape information
has to be studied. On the other hand, to examine the dis-
ease progression, longitudinal deformation patterns over time
need to be investigated. It calls for an effective algorithm
to carry out both the shape analysis and deformation analy-
sis of medical images. Shape and deformation analysis can
both be formulated as studying the mapping between two
corresponding shapes. In shape analysis, a geometric shape
with a given topology can be considered a deformed shape
from a template. Shape analysis and classification amongst
a collection of geometric structures can then be carried out
by investigating their deformation patterns from the common
template. Besides, longitudinal deformation analysis can be
done by studying the registration maps between images at
multiple points in time. Thus, the analysis of deformation
patterns plays an important role.
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In the practical scenario, the deformation pattern within a
certain class may not be deterministic but follow a probability
distribution. For instance, the longitudinal deformation of the
anatomical structures amongst the diseased group can have
more than one pattern. This adds an extra challenge in defor-
mation analysis. An effective model that allows the analysis
of the probability distribution of deformations, given the data
information with uncertainty, is neccessary.

To address this problem, we propose to parameterize the
space of deformations using computational quasiconformal
(CQC) theories. More specifically, every homeomorphic de-
formation can be represented by its associated Beltrami coef-
ficient (BC) [1, 2]. The BC captures the geometric informa-
tion of the corresponding deformation. It measures the local
geometric distortion (specifically the quasiconformality) un-
der the deformation. Also, there is a one-to-one correspon-
dence between the space of BCs and the space of deforma-
tions. Hence, the BC is an effective representation of the de-
formation. The BC can be easily computed, which obeys a
partial differential equation, called the Beltrami’s equation.
With the BC, a feature vector, called the QC feature, given by
the Fourier coefficients of the BC can be obtained. The QC
feature describes the deformation and can be applied for the
purpose of deformation analysis. The space of QC features in-
herits a simple and natural metric, namely the Frobenius dis-
tance, which makes it feasible to incorporate existing classifi-
cation models for shape and deformation classification. With
this framework, we propose in this paper three algorithms to
handle the following tasks:

1. Develop a classification model to classify shapes with
multiple modes (shape patterns) in each group;

2. Develop a classification model to classify longitudinal
deformation patterns with multiple modes in each class;

3. Train a machine that can classify a new input shape into
its associated class and predict its deformation, given a
dataset with both the shape and longitudinal deforma-
tion pattern information.

We test our proposed algorithms on both synthetic and real
medical images. Results demonstrate the efficacy of our pro-
posed framework.



2. RELATED WORK

Shape and deformation analysis have been studied previously.
For 2D shape analysis, intuitive geometric features, such as
area, circularity, curvature, heat kernel and their combina-
tion, have been utilized to compare shapes [3, 4, 5, 6]. Some
other contour-based shape analysis models pay more atten-
tion to local boundary information and break a contour shape
into several pieces [7, 8]. Related works using conformal and
quasiconformal theories for 2D shape analysis have also been
proposed [9, 10, 11]. 3D shape analysis using quasiconfor-
mal theories have also been explored [12, 13, 14, 15, 16, 17].
Besides, different models have been proposed for deforma-
tion analysis. Quasiconformal models have been proposed
for multiscale analysis of deformations [18] and decomposi-
tion of deformations into normal and abnormal components
[19]. Besides, some models have been recently proposed to
study non-deterministic deformation patterns [20, 21].

3. METHOD

In this section, we describe our proposed framework in de-
tails. We consider a collection of images {Ij}Nj=1 capturing
the geometric structures of interest. Associated deformations
of the image domain D are used to study the geometry of
shapes and their longitudinal deformation patterns.

3.1. Beltrami coefficient and Beltrami feature

Every homeommorphic deformation f : D → D satisfies the
Beltrami’s equation:

∂f

∂z̄
= µ(z)

∂f

∂z
in D, (1)

where µ = ρ+ iτ : D → C is called the Beltrami coefficient
(BC) with supreme norm ||µ||∞ < 1. The BC measures
the local geometric distortion, or more specifically the qua-
siconformality, under f (see Figure 1)[1, 2]. Given f , its
associated BC can be easily computed by the quotient of
the first derivatives, according to the Beltrami’s equation (1).
Conversely, given µ, its corresponding deformation map can
be determined. Hence, the BC is an effective representation
for the deformation map. The Beltrami’s equation can be
reformulated as an elliptic PDE: ∇ · (A(µ)∇f) = 0, where

A(µ) = 1
1−|µ(z)|2

(
(ρ− 1)2 + τ2 −2τ

−2τ (1 + ρ)2 + τ2

)
is a

spatial dependent matrix. Given a deformation pattern with
randomness, one can describe it by considering the BC as a
random field µ(z, ω), where ω ∈ Ω is the random outcome.
The deformation pattern can then be regarded as the solution
of the stochastic PDE: L(z, ω)f(z, ω) = 0.

In the discrete case, D is a rectangular and regular mesh
with N × N vertices. The BC µ is then a N × N complex

Fig. 1: Quasiconformality illustration

matrix, which can be written in terms of discrete Fourier ex-
pansion:

µ(z) =

N−1∑
m=0

N−1∑
m=0

cm,nϕm,n(z), (2)

where ϕm,n = e2i
mx+ny

N2 and cm,n’s are the discrete Fourier
coefficients of µ. cm,n’s can be computed easily by fast
Fourier transform (FFT).

Let {cmk,nl
}0≤k,l≤K−1 be Fourier coefficients asso-

ciated to the lowest K2 frequencies. Its associated BC
µ̃ =

∑K−1
k=0

∑K−1
l=0 cmk,nl

ϕmk,nl
(z) corresponds to a de-

formation map f̃ capturing the general pattern of f . We
define the QC feature as QK

f = (cmk,nl
)0≤k,l≤K−1, which is

the key ingredient for deformation analysis in this work. The
whole pipeline is illustrated in Figure 2.

With the QC feature, we now describe three algorithms for
shape and longitudinal deformation analysis in the following
subsections.

Fig. 2: QC feature computation pipeline

3.2. Shape classification model

Given a collection of images S = {Ij}Nj=1 capturing the geo-
metric structures. The images Ij’s are registered to a common
template image J by the registration map fj : D → D. If the
topology of the geometric structure is known, the template
image can be chosen as a binary image containing a simple
shape (such as a circle) of the same topology (see Figure 2).
If medical images are considered, an image containing the
mean shape within a class can be used. Each geometric struc-
ture in Ij is then associated with a QC feature QK

fj
. S can be

classified into several groups. Within each group, there can be
multiple patterns or modes. Using our framework, {QK

fj
}Nj=1



is a distribution in K2-dimensional Euclidean space, which
can effectively describe the probability distribution of shapes
of S. {(QK

fj
, lj)}Nj=1, where lj is the label representing the

class of Ij , can be incorporated into conventional classifica-
tion model for shape classification. In this work, we apply two
approaches: 1. k-nearest neighborhood (KNN) classification
and 2. deep neural network (DNN) classification. KNN clas-
sifier labels a new input data by taking into consideration of
k-nearest neighbor points from the labeled training data based
on the given distance. We use the simple Frobenius norm as
the distance between two QC features. We then analyze the
category of those neighbors and assign the category for the
test data based on the majority vote. As for the DNN classifi-
cation, a deep neural network (DNN) is trained, which takes
the QC feature as input and outputs a vector of size is the
number of classes M . The j-th entry is close to 1 if the input
data belongs to class j.

3.3. Longitudinal deformation classification

Given a collection of data with longitudinal deformation in-
formation. Each data point is denoted by (I1j , I

2
j ), where I1j

and I2j are images capturing the geometric structure of inter-
est at time 1 and 2 respectively. Let fj : D → D be the
registration map between I1j and I2j . Suppose ϕj : D → D
parameterize Ij to a common template image J . This normal-
izes the geometric structure according to the template. We
consider the deformation map of the template image given
by gj = ϕj ◦ fjϕ

−1
j . Each gj can be described by its asso-

ciated QC feature QK
gj . Thus, the collection {QK

gj}
N
j=1 cap-

tures the probability distribution of the longitudinal deforma-
tion pattern. Each class can have more than one mode or de-
formation pattern. We apply the KNN and DNN models on
{(QK

gj , lj)}
N
j=1 to classify longitudinal deformation.

3.4. Joint shape classification and deformation prediction

Given a dataset with both the shape and longitudinal defor-
mation information, our goal is to train a machine that can
classify a new input shape to its associated class and predict
its deformation. Each data point has two images I1j and I2j
capturing the geometric structure at two different times and
the label lj representing the class of I1j is known. As in Sec-
tion 3.2, the shape of the structure in I1j can be described by
the QC feature QK

fj
, where fj is the deformation map from

the template shape image to I1j . According to Section 3.3, the
longitudinal deformation of I1j can be represented by gj or its
associated BC νj , where gj is the deformation map between
the template shape image. The deformation pattern can be de-
scribed by {QK

gj}
N
j=1. As in Section 3.2, we train a classifier

N to classify {I1j }Nj=1 into their corresponding classes. Thus,
given a new input data I∗, we can determine its associated
class by: j∗ = N (I∗).

Next, to predict the deformation pattern of I∗, we carry
out the following procedure. First, we identify the M nearest
neighbor {QK

fjm
}Mm=1 in its class according to the Frobenius

norm of the QC features. Each QK
fjm

is associated to a BC
νjm or a QC feature QK

gjm
, which describe the longitudinal

deformation. Let dm = ||QK
fjm

− QK
f∗
||2F , where f∗ is the

registration map from the template to I∗ and || · ||F represents
the Frobenius norm. A new BC can be estimated as follows:

ν∗ =

M∑
m=1

(
dm∑
n dn

)
νjm . (3)

The associated deformation map g∗ of ν∗ can be constructed
by solving Equation (1). g∗ predicts the longitudinal defor-
mation of I∗.

4. EXPERIMENTS

In this section, we test our proposed methods in Section 3
on both synthetic and real medical images. The data gen-
eration and KNN classification models are implemented by
Matlab 2021a, whereas the DNN model is implemented by
Python 3.6 on a Windows 11 PC with 3.20 GHz AMD Ryzen
7 5800H with Radeon Graphics. For classification, 1000 data
pairs will be used, among which 800 are used for training and
200 for testing. The resolution of the input image is uniform
256× 256. We set K = 10 for the QC features.

Method Ana. Shape Brain Shape Brain Deform.
KNN 99.99 83.18 80.76
DNN 99.99 93.24 92.96

Table 1: Classification accuracy

4.1. Synthetic and Brain Shape Classification

Fig. 3: Synthetic experimental results

We first test the shape classification model proposed in
Section 3.2. Figure 3 shows a synthetic example. Shapes



Fig. 4: Shape analysis results on medical images

are labeled into classes, of which there are two shape pat-
terns or modes in each class. The QC features for each shapes
are computed. Using multidimensional scaling (MDS), we
can visualize the distribution of the QC features according to
their Euclidean distances, which is as shown in Figure 5(a).
We applied both the KNN and DNN models for shape clas-
sification. Both methods performed very well with 99.99%
accuracy as reported in Table 1. Figure 4 shows a colletion
of brain MRIs with different shapes of the lateral ventricles.
The collection is partitoned into two groups. One groups con-
tains images whose lateral ventricles are believed to be nor-
mal. The other group contains images whose lateral ventri-
cles are abnormally deformed. Abnormal shapes of lateral
ventricles are often observed amongst patient suffering brain
injuries, such as Periventricular Leukomalacia. Each group
contains two shape modes. As shown in Figure 5(b), Healthy
a are close to Diseased A in distance, although they are con-
sidered to be totally different group. Such a subtle difference
in Euclidean distance resulted in 83.18% classification accu-
racy for KNN model. It is notably lower than that by the DNN
model, which achieves 93.24%.

-3 -2 -1 0 1 2 3
103

-2

-1

0

1

2

103

Class 1 Case a
Class 1 Case b
Class 2 Case a
Class 2 Case b

(a) Anatomical Cluster 3
-1 -0.5 0 0.5 1 1.5 2

103-1

-0.5

0

0.5

1

1.5

2

103

Healthy a
Healthy b
Disease A
Disease B

(b) Medical Cluster 4
Fig. 5: Plots of QC features by MDS

4.2. Longitudinal Shape Classification

We also test our model for longitudinal deformation analy-
sis. Figure 6 shows the longitudinal deformations of lateral
ventricles in some brain MRIs. In this experiments, we have
a collection of 1000 deformations, which are classified into
two groups. Each group contains two deformation patterns.

Fig. 6: Longitudinal deformation analysis on medical images

800 of them are used as training data and 200 are used as the
testing data. As reported in Table 1, the classification accu-
racy of the KNN classifier is 80.76%. The DNN classifier can
achieve a much higher accuracy, which is 92.96%.

Fig. 7: Illustration of joint shape classification and deformation pre-
diction model

4.3. Joint shape classification and deformation prediction

The diagnoisis of disease and the prediction of the disease
progression are two important taks in medical image analysis.
These tasks can be simultaneously acheived using our model,
as described in Section 3.4. Figure 7 demonstrates the results
using our proposed model. The top brain MRI is classifed
as a normal subject and the predicted deformation of the lat-
eral ventricle is subtle. The bottom brain MRI is classified to
contain an abnormal lateral ventricle, whose predicted defor-
mation is more severe without proper medical intervention.

5. CONCLUSION

In this paper, we address the problem of analyzing the shape
and deformation pattern of geometric structures. We for-
mulate the problem in terms of deformation analysis. We
propose to apply the QC feature based on quasiconformal
theories to describe the deformation pattern. The collection
of QC features captures the distribution of deformations as
data points in a high-dimensional Euclidean space. Using
the framework, we develop models for shape classification,
longitudinal deformation classification and joint shape classi-
fication and deformation prediction.
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