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Abstract. Information is not generally distributed uniformly in an image domain. Thus, to make the convolu-4
tional neural network focus more on those important, some deformation on convolution windows or5
feature maps should be applied. Besides, the topology of an image should be preserved from the ideas6
for defining the convolution operation. However, controlling topology is hard and not convenient7
for existing methods since they all use vector representation for displacements. In this paper, we8
proposed Quasi-Conformal Transformer Network using Beltrami representation, which is a strong9
representation to control the bijectivity and the degree of geometric deformations. Together with our10
Beltrami Solver Net(BSN), we proposed an end-to-end learnable network, which advantages other11
works on its power to control the geometric deformation of the feature maps.12

Key words. deformable convolution, deformable pooling, disturblance-invariant, bijectivity13

1. Introduction. The information is not usually distributed uniformly in images. The14

target objects in images may differ in pose, position, and scale. Some human-caused errors may15

also bring challenges to image processing. To solve this problem, some feature representation16

methods that are invariant to transformation like SIFT (scale-invariant feature transform) [24]17

are proposed. With the development of computing power, the convolutional neural network18

(CNN) [17], with its transformation-invariant convolution windows, becomes the most popular19

and practical model that altered the landscapes of the computer vision community. However,20

since the convolution window and the pooling window are both defined to be in the fixed size21

and shape, some works accounting for adaptive convolution are proposed.22

The adaptive convolution is mainly defined through two approaches. The spatial trans-23

former (STN) [11] proposed the learnable spatial transformation on feature maps to focus24

only on regions that contain the most information. However, STN is not convenient to assign25

non-rigid transformations in the network. Though it may become possible with the thin-plate26

spline(TSP) method, the topology of the transformation is not guaranteed to be preserved.27

Another way is direct to define the deformable convolution(DeformConv) [6], where the dis-28

placement vectors are assigned directly on convolution windows. Since this work use vector29

representation, they are easy to result in a messy deformation like that in Figure.1 which30

contains self-intersections and failed to keep the topology of an image.31

However, consideration for topology is a very important advantage of a convolutional32

neural network over a fully-connected neural network, which ignores it[17]. Reviewing the33

traditional sliding window methods, like the idea of Sobel operator [13], Prewitt operator [26],34

et al. , is to compute the gradient of the intensity function of images. Since the gradient com-35

putation will only involve neighbors, the operator window should always encircle a continuous36

region. More than that, if the displacement vectors are not restricted properly, overfitting37

in the process will easily occur. From these perspectives, the topology of images and feature38

maps should be preserved. In some cases, even the degree of the freedom of deformation for39
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Figure 1: Example for images who failed to preserve the topology during processing. The
dinosaur are warped to gain an extra mouth by fold its tail inside.

either feature map or convolution window should be controlled to reduce overfitting.40

However, bijectivity is very important for tasks that want to preserve the topology and41

avoid self-intersection. If the transformation mapping failed to preserve the original topology,42

the transformed image would easily lose its original semantic meaning. The idea can be clearly43

explained by Figure.1, the dinosaur got another mouth in its body which is wrongly mapped44

by its tail. Thus, to assign reasonable spatial attention to the input images, we propose our45

quasi-conformal transformer network in this paper. Compared to the previous work[11], our46

model can produce pixel-wise transformation, which outperforms the TPS variant of spatial47

transformer network that failed to produce topology-preserving mapping.48

Our model is based on the quasi-conformal theory and uses Beltrami coefficient as the49

mapping representation instead of control points or vector field. By restricting the Beltrami50

coefficient to be less than 1, the associated mapping can be guaranteed to be bijective. Thus,51

our quasi-conformal transformer network is composited of two modules (Figure.7). The coeffi-52

cient estimator predicts the Beltrami coefficients that represent the mapping and the Beltrami53

solver network that transfers the Beltrami representation into vector representation that is54

convenient to do spatial transformation pixel-wisely. Individual modules will be introduced55

and discussed in more detail in Section.4.56

To evaluate the capacity of the quasi-conformal transformer network, we test the clas-57

This manuscript is for review purposes only.



QUASI-CONFORMAL TRANSFORMER NETWORK 3

sification results on images with different kinds of deformation. On such deformed images,58

conventional standard rectangle convolution can not accomplish the tasks well. However, due59

to the spatial attention assigned by the quasi-conformal transformer, our model can obtain60

much better results than a network without spatial transformers. Compared to the thin plate61

spline variant of spatial transformer network, our method can also acquire a higher accuracy62

rate and are easier to optimize because of the proper topology constraint.63

To sum up, our contributions are:64

• We introduced Beltrami representation for a pixel-wise spatial transformer in neural65

network, which is convenient to control the topologic property of the transformation66

mapping.67

• By controling Beltrami coefficients, the mappings produced are guaranteed to be68

topology-preserving. By experiments results, such mapping help with classification69

results.70

• We can achieve deformable convolution and deformable pooling with quasi-conformal71

transformer network, which is difficult by using the pixel-wise thin plate spline variant72

of spatial transformer network as it usually failed to preserve the topology of the73

transformation mapping.74

2. Related Work.75

2.1. Computational Quasi-Conformal. Computational conformal is a powerful tool to76

control the geometric variation and topology in image science[16, 22] and surface processing[20,77

8]. Benefitting from the Beltrami representation, the mapping between two different domains78

can preserve good geometric properties like bijectivity and smoothness. Through controlling79

the Beltrami coefficients with such representation of mappings. Driven by the motivation to80

preserve different geometric information, ways of parameterization methods are proposed [9, 3,81

2]. Such convenient representation are also popular and succeed in computational fabrication82

community [29, 5, 25]. With the capability to handle large deformations, the quasi-conformal83

method also succeed in registration for images [16, 22] and surfaces [4] and segmentation with84

topology- and convexity prior [33, 28].85

2.2. Deep Learning. Neural network models [18] are widely employed and greatly suc-86

cussed in different fields like image science and natural language processing. With convolution87

neural network[17], translation invariants become available for learning methods and intro-88

duce the development of image science to the next stage. Classification is the first vision task89

that benefits from deep layers[15]. Inspired by the success, other tasks adopt deep learning90

models to solve the problems[]. Besides, the great success of the application of deep learning,91

the model itself is also developing. Max-pooling layers are introduced into the neural network92

model for dimensionality reduction by [30]. [27] increase the depth of the network by using93

very small (3 × 3) convolution windows to enhance the non-linearity of the network. With94

shortcut connections, ResNet [10] overcome the vanishing problem that prevents models from95

learning.96

Jaderberg et al. [11] proposed the spatial transformer network, which is the first work97

to introduce spatial transformation to assign attention to feature map. Warping a feature98

map and doing convolution in the normal way is mathematically equivalent to defining some99
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special convolutions learned from data. Jeon and Kim [12] proposed active convolution that100

can sample the locations of the convolution with some displacements that are shared over101

different spatial locations. However, the information is not uniformly distributed in the feature102

map. Not all pixels contribute equally to the final results[23]. Motivated by this, Qi et al.103

[6, 34] designed deformable convolution whose convolution differs not only among different104

maps but even on different spatial locations of the feature map.105

3. Mathmetical Background. In this chapter, we introduce some fundamental geometry106

concepts and theories that are related to our model. In brief words, a quasi-conformal mapping107

is mainly used for our registration map. Besides, since we need to compress our registration108

map as discussed in the introduction, Fourier compression for Beltrami representation will109

also be introduced.110

3.1. Conformal Maps.111

Definition 3.1. (Quasi-conformal mape). A conformal map is a map f : C → C that112

satisfying the Beltrami equation113

(3.1)
∂f

∂z̄
= µ(z)

∂f

∂z
114

for some complex-valued function named as Beltrami coefficient µ satisfying ∥µ∥∞ < 1 and115
∂f
∂z is non-vanishing almost everywhere. The complex partial derivatives are given by116

(3.2)
∂f

∂z
:=

1

2

(
∂f

∂x
− i

∂f

∂y

)
and

∂f

∂z̄
:=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
117

µ is the Beltrami representation, which is also called the Beltrami coefficient, of the quasi-118

conformal map f . It’s worthy to mention that µ is a measure of non-conformality. Particularly,119

for a point p, suppose µ(p) = 0. Then, the associated quasi-conformal map f is conformal120

around a small neighborhood of p. In this case, Equation 3.1 is the Cauchy-Riemann equation.121

This can also illustrate that conformality analysis of a quasi-conformal map f can be simplified122

into the analysis of its associated Beltrami coefficient µ. Infinitesimally, such a map f can be123

rewritten as follows in a local neighborhood around a point p:124

(3.3)
f(z) = f(p) + fz(p)z + fz̄(p)z̄

= f(p) + fz(p)(z + µ(p)z̄)
125

This further enhanced our discussion before that f is conformal when µ(p) = 0. To explain126

for the equation above, f(p) is a translation, while fz(p) is a dilation. Since both of them127

are conformal, all the non-conformality of f is brought by D(z) = z + µ(p)z̄. Hence, the128

Beltrami coefficient µ actually encode the conformality of f . Analyzing quasi-conformal f is129

equivalent to that for its associated Beltrami coefficient µ. To be detail, the angle of maximal130

magnification is arg(µ(p))/2 with magnifying factor 1 + |µ(p)|; for the maximal shrinking is131

the orthogonal angle (arg(µ(p))− π)/2 with shirking factor 1− |µ(p)|.132

The maximal quasi-conformal dilation of f is given by133

(3.4) K =
1 + ∥µ∥∞
1− ∥µ∥∞

134
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Figure 2: Illustration of how the Beltrami coefficient measures the conformality distortion of
a quasi-conformal map

Figure 2 illustated the geometry of quasi-conformal map.135

Another important relationship between a map and its Beltrami coefficients is the diffeo-136

morphism property. By a norm constraint on µ, the bijectivity of f can be preserved which137

is explained as following theory.138

Theorem 3.2. If f : C → C is a C1 map. Define139

(3.5) µ =
∂f

∂z̄
/
∂f

∂z
140

If µ satisfies ∥µf∥∞ < 1, then f is bijective.141

For two quasi-conformal maps f ,g, the Beltrami coefficient of their composition can be142

expressed in terms of their individual Beltrami coefficients µf , µg directly according to the143

following theory.144

Theorem 3.3. For two quasi-conformal maps f : Ω ⊂ C → f(Ω) and g : f(Ω) → C,145

whose Beltrami coefficients are µf , µg respectively. The Beltrami coefficient of the composited146

function g ◦ f is clearly defined as147

(3.6) µgof =
µf +

(
fz/fz

)
(µg ◦ f)

1 +
(
fz/fz

)
µf (µg ◦ f)

148

Theorem 3.4. Suppose f : M1 → M2 and g : M2 → M3 are two quasi-conformal maps.149

Write the associated Beltrami coefficient as µf−1 and µg respectively. Suppose µf−1 = µg.150

Then, the Beltrami coefficient of g ◦ f is equal to 0. In other words, g ◦ f : M1 → M3 is a151

conformal map.152

As we almost have everything for computing Beltrami coefficients from a given quasi-153

conformal map, we also need the converse. That’s to say, given complex function µ, we can154

solve out it associated quasi-conformal map f if ∥µ∥∞ < 1.155
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Given a Beltrami coefficient µ which is less than 1. Denote the corresponding quasi-156

conformal map f : C → C as f = u+ iv, we have157

(3.7) µ(f) =
(ux − vy) +

√
−1 (vx + uy)

(ux + vy) +
√
−1 (vx − uy)

158

Rewrite µ = ρ+ iτ . From the Beltrami Equation 3.1, we are able to use one pair of vx, vy or159

ux, uy to describe the partial derivatives of the other pairs with linear combinations as:160

(3.8)
vy = α1ux + α2uy;

−vx = α2ux + α3uy
and

−uy = α1vx + α2vy

ux = α2vx + α3vy
161

where α1 = (ρ−1)2+τ2

1−ρ2−τ2
; α2 = − 2τ

1−ρ2−τ2
; α3 = (1+ρ)2+τ2

1−ρ2−τ2
. Since ∇ ·

(
−vy
vx

)
= 0 and ∇ ·162 (

−uy
ux

)
= 0, we have163

(3.9) ∇ ·
(
A

(
ux
uy

))
= 0 and ∇ ·

(
A

(
vx
vy

))
= 0164

where A =

(
α1 α2

α2 α3

)
and is easily checked to be symmetric positive definite. Equation 3.9165

is called the generalized Laplace equation. Solving the equation, so one can obtain everything166

for f . Note that here the information for α1, α2 and α3 are given by the Beltrami coefficient167

µ. In a word, when we need to find an optimal quasi-conformal map, we can convert the168

problem to find an optimal complex-valued function alternatively.169

Alternatively, quasi-conformal maps can also be defined between two Riemann surfaces M170

and N by Beltrami differential instead of Beltrami coefficient. A Beltrami differential µ(z)dzdz171

on M is an assignment to each chart (Uα, ϕα) of an L
∞ complex-valued function µα defined172

on the local parameter zα such that173

(3.10) µα (zα)
dzα
dzα

= µβ (zβ)
dzβ
dzβ

174

on the domain also covered by another chart (Uβ, ψβ) , where
dzβ
dzα

= d
dzα

ϕαβ and ϕαβ = ϕβ◦ϕ−1
α .175

For a better illustration, we give figure 3.176

3.2. Fourier Approximation for Beltrami Representation. [21] shows that Fourier ap-177

proximation for Beltrami representation can easily preserve the mapping information while178

that for the representation of coordinate functions fails to enforce the homeomorphism. Com-179

pared with the latter method which requires that the Jacobian of the coordinate functions180

has to be greater than 0, the Fourier approximation for Beltrami representation requires only181

that the supreme norm must be less than 1, which is easier to be satisfied.182

In the discrete case, an N × N Beltrami coefficient µ can be separated into two images183

representing the real and imaginary parts, µr and µi, respectively. The DFT of µr is184
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Figure 3: Beltrami differential on general Riemann surfaces

(3.11) µ̂r(m,n) =
1

N2

N−1∑
k=0

N−1∑
l=0

µr(k, l)e
−
√
−1 2πkm

N e−
√
−1 2πln

N185

This is equivalent to186

(3.12) µ̂r = UµrU187

where Ukl =
1
N e

−
√
−1 2πkl

N , 0 ≤ k, l ≤ N − 1. The inverse DFT of µ̂r is188

(3.13) µr(p, q) =

N−1∑
m=0

N−1∑
n=0

µ̂r(m,n)e
√
−1 2πpm

N e
√
−1 2πqn

N189

which can be rewritten as190

(3.14) µr = (NU∗)µ̂r(NU
∗)191

When using Fourier coefficients µ̂r, µ̂i to approximate Beltrami coefficients, we keep only a192

small fraction of the frequency components which acts as the low-frequency components. This193
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is equivalent to saying that only a small fraction of the frequency components can well capture194

the majority of deformation. Motivated by this idea, we propose the Beltrami Solver Network195

(BSNet) which takes a Beltrami coefficient as input and uses the Fourier approximation to196

represent the global information of the input.197

3.3. Numerical Implementation of LBS. Given the Beltrami Coefficient µ, we can re-198

construct the corresponding quasi-conformal mapping f by solving (3.9)199

In discrete case, the parameter domain D is a mesh grid. The restriction of f on each200

triangular face T is linear and can be written as201

(3.15) f |T (x, y) =
[
u|T (x, y)
v|T (x, y)

]
=

[
aTx+ bT y + rT
cTx+ dT y + sT

]
202

Obviously, on each face, we have induced partial derivatives from the face-wise linear203

assumption.204

Hence, the partial derivatives of f at each face T can be denoted as Dxf(T ) = aT + icT205

and Dyf(T ) = bT + idT . Now the gradient ∇T f := (Dxf(T ), Dyf(T ))
t on T can be computed206

by solving207

(3.16)

(
v1 − v0
v2 − v0

)
∇T fi =

(
fi(v⃗1)− fi(v⃗0)
fi(v⃗2)− fi(v⃗0)

)
208

where [v⃗0, v⃗1] and [v⃗0, v⃗2] are two edges on T .209

Besides, µ is a face-based function. Denote the face-based function αi on face T by αT
i ,210

where i = 1, 2, 3. From 3.8, we have211

(3.17)
−dT = αT

1 aT + αT
2 bT

cT = αT
2 aT + αT

3 bT
212

and213

(3.18)
−bT = αT

1 cT + αT
2 dT

aT = αT
2 cT + αT

3 dT
214

Let T = [v⃗i, v⃗j , v⃗k] and w⃗I = f(v⃗I), where I = i, j, k. Suppose vI = gI + ihI and215

wI = sI + itI (I = i, j, k). Using (3.16), According to mapping (3.16), for each face T , we216

have217

(3.19)

[
aT bT
cT dT

] [
gj − gi gk − gi
hj − hi hk − hi

]
=

[
sj − si sk − si
tj − ti tk − ti

]
218

Thus,219

[
aT bT
cT dT

]
=

1

2 ·Area(T )

[
sj − si sk − si
tj − ti tk − ti

] [
hk − hi gi − gk
hi − hj gj − gi

]
(3.20)220

=

[
AT

i si +AT
j sj +AT

k sk BT
i si +BT

j sj +BT
k sk

AT
i ti +AT

j tj +AT
k tk BT

i ti +BT
j tj +BT

k tk

]
(3.21)221
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i

v

T1

T2

T1

i

j

k

T2

i

jk

Figure 4: Illustration of the derivation of the coefficient of vertex v

where222

(3.22)

AT
i = (hj − hk) /2 ·Area(T ); BT

i = (gk − gj) /2 ·Area(T )
AT

j = (hk − hi) /2 ·Area(T ); BT
j = (gi − gk) /2 ·Area(T )

AT
k = (hi − hj) /2 ·Area(T ); BT

k = (gj − gi) /2 ·Area(T )
223

For each vertex vi, let Ni be the collection of neighborhood faces attached to vi. By careful224

checking, one can observe that225

(3.23)
∑
T∈Ni

AT
i bT =

∑
T∈Ni

BT
i aT ;

∑
T∈Ni

AT
i dT =

∑
T∈Ni

BT
i cT ;226

Substituting Equations (3.17) and (3.18) into (3.23), we obtain the following equations227

(3.24)
∑
T∈Ni

(AT
i [α

T
1 aT + αT

2 bT ] +BT
i [α

T
2 aT + αT

3 bT ]) = 0228

(3.25)
∑
T∈Ni

(AT
i [α

T
1 cT + αT

2 dT ] +BT
i [α

T
2 cT + αT

3 dT ]) = 0229

Replacing aT , bT , cT and dT with their corresponding expressions, we derive the following230

coefficient for the central vertex i of Ni231

(3.26) ci =
∑
T∈Ni

[αT
1 (A

T
i )

2 + 2αT
2A

T
i B

T
i + αT

3 (B
T
i )

2]232

For two incident triangular faces T1, T2 ∈ Ni, the edge e between T1 and T2 connect the233

central vertex i and another vertex v, as shown in Figure 4. In this case, the index of vertex234

v in T1 is j, and that in T2 is k. The coefficient of vertex v can then be written as follow235
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(3.27)
cv = αT1

1 A
T1
i A

T1
j + αT1

2 (AT1
i B

T1
j +AT1

j B
T1
i ) + αT1

3 B
T1
i BT1

j +

αT2
1 A

T2
i A

T2
k + αT2

2 (AT2
i B

T2
k +AT2

k B
T2
i ) + αT2

3 B
T2
i BT2

k

236

According to Equation (3.26), (3.27), (3.24) and (3.25), for a vertex i, we can write down237

the following equations238

(3.28)
cisi +

∑
v∈Vi

cvsv = 0

citi +
∑

v∈Vi
cvtv = 0

239

where Vi is the set of adjacent vertices of vertex i.240

For an N ×N mesh grid, we have241

(3.29)
Css = 0
Ctt = 0

242

where s and t are the N × N dimensional coordinate vectors, in which the entries of243

boundary constraints set to their true values. Cs and Ct are the same N2×N2 sparse matrix,244

each row of which contains ci and cv for a vertex in the mesh grid. The only difference between245

Cs and Ct is that the rows that correspond to the boundary constraints of the two coordinates246

are set to 0.247

Solving this linear system with the boundary constraints, we can obtain the corresponding248

mapping f given a Beltrami coefficient µf .249

3.4. Convolutional Neural Network. Deep learning is a branch of Machine Learning.250

With the development of computation power, deep learning become popular and helped mul-251

tiple fields like computer vision, natural language processing, financial modeling, etc. Imi-252

tating the way human beings learn from experiences, supervised deep learning methods learn253

to solve a task by doing regression from data. A deep learning model, which is generally a254

neural network, consists of three main parts: architecture, optimization method, and the loss255

function.256

For the architecture, the neural network is made of neurons that mimic the functionality of257

human brain. For each neuron, the main components include the input feature x1, x2, . . . , xn,258

thier correspondending weighting ω1, ω2, . . . , ωn, the transfer function which is simply sum-259

mation in most cases, the bias b and the activation function ϕ. When a group of feature passes260

through this neuron, it will output a signal y, which is conputed by261

(3.30) y = ϕ

(
n∑

i=1

xiωi + b

)
262

The output y of this neuron will be the input of the neurons connected to this one in the263

after layer. Through such a process, the signals are transmitted layer by layer, and features264

are processed to produce the final output. In recent years, the neural network become deeper265

and deeper. This may be explained as more layers would enrich the levels of features and266
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Figure 5: Convolution Neural Network

leads to a better result. However, a network model with too many layers is hard to train267

and get to convergence. Through deep layers can bring more non-linearity and flexibility to268

approximate the function that describes the problem to be solved, too many parameters may269

result in vanishing and exploding gradient problems [10]. For tasks like image analysis, pixel270

signals are defined as associated with their neighbors. In other words, to extract the features271

like edges, shapes, textures, and objects, one should not only consider this pixel only but272

also should account for its relation with others nearby. Besides such a need for consideration273

on local, the location of some objects may be different spatially in the image domain. The274

convolutional neural network, which is made of layers of trainable filters, is to solve such tasks.275

In a convolution neural network, the neuron’s input feature is encircled by a moving window276

while the output will be located at the place accordingly (see Figure.5).277

During the training of a deep neural network model, the data are input to generate predic-278

tions. To evaluate how well the model is trained, we need to compare the difference between279

the prediction and the ground truth. Such a difference is not always the Euclidean distance280

between them. For example, for a classification task, cross-entropy loss is used more often281

due to its capacity on measuring the disorder and unpredictability of a system. When we282

design the model to output a probability distribution q(x) where the input should belong,283

using cross-entropy loss can enhance the data cluster into groups and approach the actual284

distribution p(x).285

(3.31) E(p, q) = −
∑

p(x) log(q(x))286

After the loss function and architecture are defined, the distance in the output space287

and the function to be regressed are fixed. The problem that remained is to optimize the288

whole model to obtain a small difference between the predicted and the target. To reduce the289

difference between the output of the network and the ground truth, the weights ωi for each290

neuron k should be updated by gradient descent. For the error defined according to some loss291

function E(Y, Ŷ ) where Y is the label and the prediction Ŷ = N(X; Ω), where N is the neural292

network with weight parameters Ω.293

The gradient for each ω is computed based on the chain-rule. This greatly reduce the294
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Figure 6: Illustration for deformable convolution via deformable feature map: do regular
convolution on the deformed feature map J = I ◦ f is equvalent to do deformable convolution
on the original feature map I

descent computation between layers. To make it clear, suppose the we have N + 1 layers in295

total, number the first(input layer) as 0 and the last(output layer) as N . Denote k-th layer296

has Mk nodes. The weight parameter from node i in m− 1 layer to node j in m layer is ωm
ij .297

The The descent for weights from the last hidden layer N − 1 to the output layer N is298

(3.32)
dError

dωm
ij

=
dError

dxmj

dxmj
dωm

ij

for i = 1, . . . ,Mm−1; j = 1, . . . ,Mm299

where xmj = hmj

(
Mm−1∑
i=1

xm−1
i ωm

ij

)
is the activated neuron value for node j in the m-th layer.300

Then descent for middle hidden layer k is301

(3.33)
dError

dωk
ij

=
dError

dxkj

dxkj

dωk
ij

for i = 1, . . . ,Mk−1; j = 1, . . . ,Mk302

where xkj = hkj

(
Mk−1∑
i=1

xk−1
i ωk

ij

)
is the activated neuron value for node j in the k-th layer.303

4. Methodology. In this section, we will introduce our Quasi-Conformal transformer,304

which can deform the feature maps through a mapping learned from training data. To make it305

convenient, let’s assume our feature map is a one-channel feature map, which is I : RH×W −→306

R, where H,W denotes the height and width respectively. For multi-channel images, we can307

do the same as that for one channel for each channel of it. The pipeline is like this: 1) Input308

a feature map I into Beltrami Generator, which is a simple and small network, to obtain309

the Beltrami coefficient µ of a Quasi-conformal mapping. 2) Input the Beltrami coefficient µ310

into a pre-trained Beltrami Solver Network (BSnet) to acquire the associated Quasi-conformal311

mapping fµ. 3) Spatially transform the feature map I with mapping fµ as I ◦fµ. 3) Input the312

deformed image I ◦fµ to a classifier or segmentation network according to the particular task.313

The architecture for our Quasi-Conformal transformer network is illustrated as Figure.7.314
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Figure 7: Quasi-Conformal transformer network

The whole model is an end-to-end neural network model without manual interference.315

Except for the BS-net, which is to solve for the quasi-conformal mapping given the Beltrami316

coefficients and is fixed as long as it’s pre-trained, every parameter in the network is learnable.317

In the following, we will introduce the grid parameterization of images, the Beltrami coefficient318

generator, Beltrami solver network, and spatial transformation in detail. Besides these, we319

will discuss some training tricks for the overall Quasi-conformal transformer network at the320

end of this section.321

4.1. Beltrami Solver Network. To make the ideal feasible, the first component required is322

a network to convert Beltrami coefficients to their corresponding mappings which is proposed323

by [1]. In the previous work, [21], the conversion from Beltrami coefficients to mappings is324

achieved by using Linear Beltrami Solver (LBS), in which a sparse linear system is required to325

be solved. In this paper, we are going to use a neural network to approximate the mappings326

given their corresponding Beltrami Coefficients. There are two benefits. On the one hand,327

once trained, a well-designed neural network gives predictions much faster than solving the328

sparse linear system. On the other hand, the neural network can backpropagate errors from329

its output to input, which makes it possible to use a trained neural network as a component330

when training another network to solve a complicated task.331

From above we notice that a single Beltrami coefficient µij represents the distortion of332

a local region, where i and j represent the indices of a triangle in the spatial position. The333

global distortion depends on the entire Beltrami coefficient µ, since the mapping is obtained334

by solving the linear system. It is natural that we can use cascaded convolutional and down-335

sampling layers to extract global information from the Beltrami coefficients, which can then336

be used to predict the mappings. The network structure should be similar to U-Net.337

However, we learn the prior knowledge from [21] that Beltrami representation can be338

easily compressed by Fourier approximation, which means that low-frequency components339

hold most of the global distortion information. With this prior knowledge, we can further340
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simplify the network structure. Compared with the convolutional layer, Fourier Transform341

has no trainable parameter and is much faster. And the generated low-frequency component342

has only two channels, much less than the deep features extracted by neural networks. As a343

result, we use Fourier Transform to extract global information.344

Once we use the Fourier approximation, we have to think about how to combine spatial345

operations, such as convolution and interpolation, and the Fourier coefficients on the frequency346

domain. Directly performing such operations on the frequency domain easily leads to poor347

performance. It is critical to introduce a layer for transforming the frequency features to the348

spatial domain.349

Considering that the size of the deep spatial features or Fourier coefficient mentioned350

above is different from the input images and the Beltrami coefficient, we cannot use (3.12)351

and (3.14) directly.352

In order to tackle this problem, we propose the Domain Transform Layer (DTL) which353

imitates the computation of (3.12) and (3.14). This layer can be formulated354

µ̂ =MµN = (µTMT )TN

µ =Mµ̂N = (µ̂TMT )TN
(4.1)355

where M and N are trainable complex matrices. This layer can be implemented by356

stacking two 1× 1 convolution layers, together with some permutation operations.357

As shown in subsection 4.1, given an input feature map of shape (H,W,C), we can permute358

the feature map to be (H,C,W ). Then we perform K kernels 1 × 1 convolution. The shape359

of the resulting feature map should be (H,C,K). These operations are equivalent to matrix360

multiplication of a H ×W matrix and a W ×K matrix.361

From (4.1) we notice that (4.1) can be implemented by stacking two matrix multiplication362

blocks. The detail structure is shown in Figure 8. In our experiments, H =W = K = L = 14.363

With DTL, the features in the spatial domain can be transformed to a proper domain364

where spatial operations work. We can then perform convolution and upsampling on the365

features to obtain the mappings.366

However, during the experiments, we found that the output mappings of the network are367

quite similar to their ground truth. But the outputs of the network have fewer details. In368

order to remedy this problem, we introduce a second path to improve the local details of the369

distortion, which are discarded in the computation of approximated Beltrami representation370

in the first path.371

As in Figure 10, the second path is the upper path. In this skip path, convolution and372

a downsampling are performed on the input µ, after which two more convolution layers are373

performed and the output features are concatenated to the output from the first path. Ex-374

perimental results in the following sections show the necessity of this skip path.375

We trained this network in an unsupervised setting. As mentioned in subsection 4.1, a376

single value in the Beltrami coefficient represents the distortion of a triangular face. The shape377

of the Beltrami coefficient describing an N ×N image should be (N − 1)× [2× (N − 1)]. Due378

to this reason, LBS takes an (N − 1)× 2× (N − 1) dimensional vector as its input. However,379

in this paper, we wish to ensure the consistency between the input and output of our model.380

To cope with this conflict, we adopt the following method.381
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Figure 9: Domain Transform Layer

Countless N × N Beltrami coefficients µsqr are generated by stacking pairs of images in382

the ILSVRC2012 dataset, which are augmented with some data augmentation tricks, such383

as random crop and flipping. µsqr serves as the input of BSNet, representing the Beltrami384

coefficients of the triangles with odd indices in each row. An (N − 1)× [2× (N − 1)] Beltrami385

coefficient µrect is then obtained by removing the last row and column of µsqr and interpo-386

lating the Beltrami coefficients representing the triangles with even indices with the values387

representing the surrounding faces. the linear system in the LBS can then be retrieved with388

µrect, the coefficients of which are then used to compute the loss.389

In Quasi-conformal geometry, every vertex with index i in a mesh satisfies Equations390

(3.29). It is natural to regard Equations (3.29) as a loss function when training a neural391

network to approximate the ground truth mapping of a given Beltrami coefficient µ.392

The loss function can be formulated as follow393

(4.2) LLapla =
1

2N2
(∥Css∥1 + ∥Ctt∥1)394
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Figure 10: The architecture of the Beltrami Solver Network (BSNet).

(4.3) LBSNet = γLLapla395

Note that each row in Cs and Ct represents the relationship between a certain pixel and the396

pixels adjacent to it. In the context of a triangular mesh, a pixel is adjacent to at most six397

pixels. So each row in Cs and Ct has at most seven nonzero elements. Although the two398

N2×N2 matrices Cs and Ct are sparse, both matrices can be rewritten as two dense arrays in399

the implementation of our method, which means that the computation of LBSNet is memory400

saving and efficient.401

4.2. Beltrami Coefficient Estimator. Another component in the proposed algorithm is402

the Estimator Network which takes the source and target images as its input and generates403

the corresponding Beltrami coefficient representing the distortion of the input images. The404

network is based on U-Net with an activation added to its output. Its framework is shown in405

Figure 11.406

The estimator performs convolution and pooling to extract the deep spatial features of407

the two input images. These deep spatial features are then up-sampled to be a two-channel408

image µ̃ from which the norm and angle of µ̃ can be computed. Notice that when we train409

Estimator, we assume that a BSNet has been trained so that for any µ satisfies ∥µ∥2 < 1, it410

can convert the µ to its corresponding mapping. Naturally, µ generated by Estimator should411

also satisfy this condition. In order to ensure ∥µ∥2 < 1, we add a Tanh activation which takes412

µ̃ as its input.413

∥µ∥2 = Tanh(∥µ̃∥2)414

where415

Tanh(x) =
ex − e−x

ex + e−x
416
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Figure 11: The architecture of the Estimator Network.

Since ∥µ̃∥2 ≥ 0, 1 > ∥µ∥2 ≥ 0 always holds. Then we have417

Re(µ) =∥µ∥2cos(Arg(µ̃))
Im(µ) =∥µ∥2sin(Arg(µ̃))

(4.4)418

µ serves as the Beltrami coefficient representing the deformation between the two input419

images.420

We also use the following loss function to suppress the norm of µ421

(4.5) Lµ =
1

N

N∑
n=1

∥µ∥22.422

The smoothness can be enhanced by423

(4.6) Lsmooth =
1

N

N∑
n=1

∥∇µ∥22.424

The fidelity term is as follow425

(4.7) LF =
1

N

N∑
n=1

∥Is ◦ f − It∥22.426

The total loss function is427
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(4.8) LEstimator = αLF + βLµ + ηLsmooth428

where α, β, and η are hyper-parameters that give different weighting to the corresponding429

terms.430

4.3. Grid Parameterization and Spatial Transformation. To make it convenient to per-431

form the pixel-wise transformation on images, we need to parametrize the image domain with432

coordinates systems. Notice that overall in this paper, the pixel would be referred to not433

only for elements in images but also for feature maps in the hidden layers of a neural net-434

work model. Also, we don’t necessarily distinguish between image and feature map in this435

work. For a image with a height of H and width of W , to parameterize it within the domain436

[0, 1]2, we discretize the whole image domain by a grid G = {(xi, yj)} = {(ihx, jhy) : i =437

1, 2 . . . , H; j = 1, 2 . . . ,W}, where hx = 1
H+1 and hy = 1

W+1 . In case the feature map contains438

multiple channels, the pixels for each channel located at the same position are parameterized439

by the same point in the grid.440

In our implementation, the target image will always be parametrized with such a regular441

and normalized grid defined above. Then what we need to deform the image is the source442

coordinates on the input image. More cumulatively speaking, for the target coordinate (xti, y
t
j),443

its corresponding pixel is the point whose pixel coordinate is (xsi , y
s
j ) and lie in the input feature444

map. To summary, the output of the coefficient estimator and BSnet should be the coordinates445

of the source grid Gs = {(xsi , ysj )} which sampled on the input image.446

Through such a setting, we can simply use the embedding function grid sample() in447

PyTorch, which is also the standard parameterization method used in spatial transformer448

network[11] and texture mapping in computer graphcis [7].449

When the source coordinates are determined, generally its not exactly the same to any of450

the coordinates that prameterized the input image. Thus, interpolation for the resampling on451

points of source coordinates is must. The method for this interpolation should be differentiable452

to enable back-propogation. Associated with an input feature map I defined on (x, y) ∈453

{(xp, yl) : p = 1, . . . ,H ′; l = 1, . . . ,W ′} and the output mapping of coefficient estimator454

and BSnet f : (xt, yt) −→ (xs, ys), we do resampling for J = I ◦ f which is defined on455

(xs, ys) ∈ {(xti, ytj) : i = 1, . . . ,H; j = 1, . . . ,W}. We can write the resampling as:456

J(xti, y
t
j) =

H′∑
p=1

W ′∑
l=1

I(xp, yl)k(x
s
i − xp; Φx)k(y

s
j − yl; Φy)

where i = 1, . . . ,H and j = 1, . . . ,W

(4.9)457

where Φx and Φy are the parameters of a generic sampling kernel k(), G0 = {(xp, yl)} is458

a regular and normalized grid that parameterized the image domain of I. The interpolation459

would be identical for each channel of the image. Let’s fix the resampling method as bilinear,460
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then the resampling method can be written as461

J(xti, y
t
j) =

H′∑
p=1

W ′∑
l=1

I(xp, yl)max(0, 1− |xsi − xp|
hx

)max(0, 1−
|ysj − yl|
hy

)

where i = 1, . . . ,H and j = 1, . . . ,W

(4.10)462

Thus, the derivative of the bilinear interpolation for output feature map J at (xti, y
t
j) with463

respect to the input feature map and the source coordinates are given respectively by464

(4.11)
∂J

∂I(xp, yl)
(xsi , y

s
j ) =

H′∑
p=1

W ′∑
l=1

max(0, 1− |xsi − xp|
hx

)max(0, 1−
|ysj − yl|
hy

)465

(4.12)
∂J

∂xs
(xsi , y

s
j ) =

H′∑
p=1

W ′∑
l=1

I(xp, yl)max(0, 1−
|ysj − yl|
hy

)h(xsi )466

where467

(4.13) h(xsi ) =


0 if |xp − xsi | ≥ hx
1
hx

if xp ≥ xsi > xp − hx

− 1
hx

if xp < xsi < xp + hx

468

and similarly to 4.12 and 4.13 for ∂J
∂ys .469

Through such a differentiable resampling method, the gradients in the neural network470

model can pass backward and enable the updating of the parameters. With the derivative471
∂J
∂xs and ∂J

∂ys , the transformer layer can be trained. Through the gradients with respect to the472

input feature map in Equation.4.11, the gradients are able to pass to the previous layer that473

outputs it and leads to an end-to-end trainable neural network model.474

4.4. Quasi-Conformal Transformer Network. The combination of the Coefficient Esti-475

mator, Beltrami Solver network, and image warper forms up the Quasi-conformal transformer476

layer(see Figure. 7). Coefficient Estimator takes the input feature map I and predicts the477

Beltrami coefficients µ that is the quasi-conformal representation for the desired mapping f .478

The predicted Beltrami coefficients are solved into the mapping by the pre-trained BS-net.479

Directly by the mapping which is the source coordinates (xs, ys) = f(xt, yt) that lie on the480

input feature map, we use image warper to do resampling and obtain the transformed map.481

In this model, except for the Beltrami Solver Network, which should remain static after it ac-482

quired enough pretraining, every module in the quasi-conformal transformer layer is trainable.483

This enables a quasi-conformal transformer to be inserted in any position of the convolutional484

neural network and ends up with an end-to-end trainable neural network model.485

The operation of what a quasi-conformal transformer layer did in a network is explicit486

and can be interpreted visually. Like the idea of spatial transformer network [11], our quasi-487

conformal transformer network can assign the input feature map a trainable warping that can488
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help the after layers work better and minimize the overall loss function. For example, in a clas-489

sification task with disturbing images, a transformer layer can be inserted before the classifier490

network to restore the disturbance and recover the semantic meaning for a better classifica-491

tion result. Simply adding it to some specific tasks can also make sense. Like some popular492

works aim for learning convolutions that differ from the regular rectangle windows[6][34], our493

quasi-conformal transformer can also learn deformable convolution definition by warping the494

feature map into a deformed one. In this way, doing regular convolution in the deformed map495

is mathematically equivalent to assigning deformable convolution in the original feature map.496

Beyond what a spatial neural network can do, quasi-conformal transformers are high-497

lighted to learn dense and large transformations that are calculated point-wisely for the input498

feature map. Though it would also be possible for a thin-plate spline (TPS) variant of the499

spatial neural network, that directly predicts the source coordinates, our method can be much500

easier to control the topology and the degree of the deformation benefit the Beltrami repre-501

sentation. Controlling such topologic and geometric properties of a spatial transformation is502

very important in learning a large and dense deformation. To be in more detail, learning a503

mapping that is too flexible and without proper constraint may easily result in overfitting.504

The loss can converge to a very low point easily due to the flexibility of the mapping but failed505

to do prediction correctly in the testing. This will be evaluated thoroughly in Section. 5.3.506

To achieve this, we carefully designed a penalty term that can constrain the mapping507

to be a diffeomorphism and enhance its property of topology-preserving. Denote the quasi-508

conformal transformer layer as Nqct and the other parts of the network as V , such a penalty509

term is written as:510

Ereg(V,Nqct) =

∫
|µ|+

∫
|∇µ|

=

H∑
i=1

W∑
j=1

µ(xti, y
t
j) +

H∑
i=1

W∑
j=1

∇µ(xti, ytj)
(4.14)511

The penalty term should be put in the final loss function. Thus, for a particular task, the512

overall cost function is:513

(4.15) E = Etask + αEreg514

where Ereg is defined as Equation.4.14 weighted by α, while Etask is the penalty term515

associated with the task, e.g. cross-entropy error for classification or mean square error for516

registration.517

In the work of this paper, the518

5. Experimental Results. In this section, we will thoroughly evaluate the capability of the519

quasi-conformal transformer network and compare it with its most related existing work[11]520

and its thin-plate spline-based variant mentioned in their work. Firstly, like the work of spatial521

transformer, we test the power for localization on distorted versions of MNIST[19] handwriting522

dataset. In this experiment, the images will be transformed affinely. Such deformed images523

will only have characters on a small region of the image domains which makes it challenging524

to do classification. Through our quasi-conformal transformer layer, the convolution will only525
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be performed on regions that contain information. The second experiment is to evaluate the526

elastic deformation restoration of the quasi-conformal transformer. To do this, we randomly527

deform the images from CIFAR10[14] and employ such deformed CIFAR10 to do supervised528

classification. We compare between two networks, one is a simple CNN classifier network529

without a quasi-conformal layer while another is the same classifier with the quasi-conformal530

transformer layer in its head. Our QCTN can restore the deformed image and result in531

better classification accuracy. In the third experiment, we will show experiments on Fashion532

MNIST[31] data that can do localization and elastic deformation restoration simultaneously.533

Lastly, on the original CIFAR10 dataset without any pre-processing, we put a QC transformer534

layer ahead of a classifier and do training without pretraining on the QC transformer layer.535

From the deformation by QC transformer on the feature map, we are able to do a learnable536

deformable convolution on images. The results promise quasi-conformal layers helped to537

improve the classification accuracy.538

Our method was implemented in Python and run on centOS-7 based central cluster nodes539

with a 2.4GHz Intel Xeon E5-2680 CPU, 64GB, and a GeForce GTX 1080 Ti GPU. The540

learning rate in the stage of classification is 0.00005. What is worthy to mention is, when we541

determine the parameter for learning rate, it’s hard for a thin-plate spline spatial transformer542

network to converge. A parameter explosion and overfitting can easily occur during its train-543

ing. However, for a fair comparison, we take the learning rate to be 0.00005 uniformly in this544

work and do an extra clip for gradients especially when implementing the TPS variant for545

STN-CNN by 10.546

5.1. Localization on Deformed MNIST. We take MNIST handwriting dataset to illus-547

trate the ability of the quasi-conformal transformer network for localizing the characters that548

are coarsely standing only in a partial region of the whole image domain. We first affinely549

deform the MNIST images. The deformation range is set to enable [−π
3 ,

π
3 ] for rotation angle θ550

and [0.2, 0.6] for scaling parameter s. The translation is allowed as long as the characters will551

not move out of the image domains. We didn’t test that for elastic deformation with MNIST552

since the elastic deformation on characters is not visually obvious. However, we do test that553

for elastic deformation with Fashion MNIST and will be presented in the later section. We554

trained three networks in this part including our quasi-conformal network to compare the555

performance. The other two models include the baseline convolutional neural network, which556

contains three convolutional layers and two fully-connected layers and the same network with557

spatial transformer (ST-CNN) or quasi-conformal transformer (QCT-CNN) layer inserted be-558

tween the input and the classifier CNN. The spatial transformer and quasi-conformal trans-559

former layer are both pretrained to obtain an initialization. In the process of pretraining, the560

transformer layer takes the deformed as input and the original image as the label to update561

the weightings in the module.562

In the stage for the classification where the overall modal is trained together, the opti-563

mization will run for 100 epochs. We evaluate the classification accuracy rate on the test564

dataset. Compared to the baseline convolutional neural network, both models equipped with565

transformer acquire better results as the accuracy rate given in Table. 1. From the visual-566

ized results shown in Figure. 12, it’s obvious that the transformer succeeds in conferring the567

feature map and focuses only on regions that encircle the characters. However, our methods568
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Figure 12: Classification result on affinely deformed MNIST. (a) the deformed images. (b)
mapping generated by STN visualized on deformed image. (c) image localized by STN. (d)
mapping generated by QCTN visualized on deformed image. (e) image localized by QCTN.
(f) ground truth. The characters on the down-left of column (a)(c)(e) indicates the predicted
result by baseline CNN, STN and QCTN respectively.

Table 1: The results for classifying affinely transformed MNIST by baseline CNN, STN and
QCTN

Method Train Test

CNN 83.62 82.73
ST-CNN 94.97 94.90
QCT-CNN 96.45 96.32

outperform STN not only by quantity but also by the quality of images transformed. With569

point-wise transformation by our QC transformer, the characters are more clean and sharp570

with little blur. Particularly, when the character lies close to the boundary of the domain,571

STN will generate a large blur because of bilinear interpolation on boundaries. However, our572

method, which is a point-wise learnable mapping, can reduce such advantages efficiently.573
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Figure 13: Classification result on CIFAR-10 with large non-rigid deformation. (a) the de-
formed images. (b) mapping generated by TPS-STN visualized on deformed image. (c) image
recovered by TPS-STN. (d) mapping generated by QCTN visualized on deformed image. (e)
image recovered by QCTN. (f) ground truth. The class names on the bottom of images in
column (a)(c)(e) indicates the predicted class by baseline CNN, TPS-STN and QCTN respec-
tively.

5.2. Elastic Deformed CIFAR-10. In this section, we perform an experiment to show that574

the quasi-conformal transformer can learn to be invariant to elastic deformation. That’s to say,575

given a distorted image that may come from capturing across some uneven surfaces like glasses576

or water, the quasi-conformal transformer layer can restore the image before it goes into the577

classification network. Through such restoration, the original semantic meaning of the image578

should be recovered. We assign the elastic deformation with different scales on the dataset579

CIFAR10, which is a small low-resolution image recognition dataset, to obtain the deformed580

dataset. For comparison, we also implemented a variant of spatial transformer network with581

thin-plate spline transformation, which outputs the mapped coordinates of the control points582

without constraint. The architecture for the localization network that predicts the mapped583
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Figure 14: Classification result on CIFAR-10 with small non-rigid deformation. (a) the de-
formed images. (b) mapping generated by TPS-STN visualized on deformed image. (c) image
recovered by TPS-STN. (d) mapping generated by QCTN visualized on deformed image. (e)
image recovered by QCTN. (f) ground truth. The class names on the bottom of images in
column (a)(c)(e) indicates the predicted class by baseline CNN, TPS-STN and QCTN respec-
tively.

coordinates are the same as our coefficient estimator for a fair comparison. Though the584

motivation of thin-plate spline (TPS-STN) and quasi-conformal transformer shares the same585

motivation, the mapping generated by TPS-STN may not be a diffeomorphism and contains586

self-foldings.587

The parameters in the experiment are set as we discussed at the beginning of this section,588

which is with a learning rate 0.00005 and clips the gradients value for the transformer layer589

with 10. It’s worthy to mention that, gradients clipping is necessary for TSP-STN but not590

for our QCTN. Through we testing. The performance is similar for QCTN with or without591

clipping. But for TSP-STN, training without clipping the gradients would result in parameter592

explosion. We take the deep layer aggregation model(DLA,[32]) as the base classifier in this593
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Table 2: The results for classifying deformed CIFAR-10 with different scales by baseline CNN,
TPS-STN and QCTN.

Method
Large Def. Small Def.

Train Test Train Test

CNN 94.55 75.84 99.13 83.06
STN-CNN 96.05 75.67 99.04 83.76
TPS-CNN 95.54 77.37 99.67 84.02
QCT-CNN 96.11 81.41 99.75 85.87

experiment.594

Here we synthesize the deformation in two scales. Figure. 14 presents the small deforma-595

tion, where some minor disturbance occurred. The large deformation is in Figure. 13, where596

the semantic meaning of the image is hard to distinguish. As illustrated in Table.2, the base597

CNN gets the lowest accuracy rate since the distortions bring some noise and degrade the598

images with information loss. For the method with transformer layers, our quasi-conformal599

transformer network obtain a better result than TPS-STN associated with mappings free of600

self-folding. From the visualized figures of the test dataset, images recovered by QCTN are601

more accurate and close to the original images, which helps human beings and neural network602

model to recognize the classes each image belong to.603

5.3. Localization and Restoration on FashionMNIST. The localization fl and restora-604

tion fr can be composited into a single mapping fc = fr ◦ fl as it’s still a diffeomorphism.605

Thus, should be able to be learned in our Quasi-conformal transformer framework. In this606

section, with the deformation consisting of both affine transformation and elastic deformation607

assigned on the dataset FashionMNIST, we present the advantages of our QC-transformer608

network that can solve the localization and the restoration simultaneously in a single QC609

transformer layer. We also do a comparison with the spatial transformer network and its610

thin-plate spline variant as well as the pure classifier without any quasi-conformal or spatial611

transformer layers.612

Table 3: The results for classifying deformed Fashion MNIST with different scales by baseline
CNN, STN, TPS-STN and QCTN

Method
Large Def. Small Def.

Train Test Train Test

CNN 71.51 68.91 73.77 71.10
STN-CNN 80.86 76.11 82.57 78.83
TPS-CNN 84.29 80.82 86.13 83.59
QCT-CNN 84.18 83.84 86.48 85.79

The parameters set for this experiment are just like the previous, gradients clipping by 10613
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Figure 15: Classification result on Fashion MNIST with small non-rigid&affine deformation.
Every batch follow the same illustration rule. As a example, DF-Bag present the deformed
image and is predicted as bag by baseline CNN. GT-shirt indicates the ground truth image
with the label as shirt. STN-Pullover, TPS-Sandal, QCT-shirt present the image recovered
by STN, TPS-STN, QCTN and the predicted results respectively. The mapping on deformed
image are visualized above them accordingly.

and the learning rate set to be 0.00005. Our methods outperform the other methods including614

the basic STN and its TPS variant as well as the baseline classifier which is the same as that615

in Section. 5.1.616

As illustrated in Table. 3, our methods did the best on both deformation scales and achieve617

around 3% and 2% higher accuracy than that of TPS-STN. Illustrated in Figure.16 for large618

deformation and Figure.15 for small deformation, QCTN is able to recover the blurred and619

distorted image the best while simultaneously localizing the main objects in the image.620

6. Conclusion and Future Work. In this paper, we introduced the Quasi-conformal trans-621

former network, which can be inserted into any part of a network. QCTN is capable to localize622

the regions that are important for the tasks. Besides, for images that contain distortions that623

may destroy the semantic meaning, QCTN can be trained to restore and recover the features624

for accomplishing tasks. More than that, since QCTN is a self-contained module, it can be625

inserted into any place of a neural network model to form up a new end-to-end trainable626

network model. Through the learnable transformation by QCTN, a deformable convolution627

can be performed by convoluting with regular rectangle on deformed feature map which is628

mathematically equivalent. Through the experiments, QCTN is proven to be able to assign629

not only spatial-invariant but also elastic deformation invariant to a network model. Besides,630
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Figure 16: Classification result on Fashion MNIST with large non-rigid&affine deformation.
Every batch follow the same illustration rule as Figure.15

compared to the similar work spatial transformer network and its thin-plate spline variant, our631

model is a point-wisely learnable transformation whose topology is guaranteed to be preserved632
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by the proper constraight Beltrami coefficients. In our following works, we plan to extend the633

application of the Quasi-conformal transformer network. For example, on registration and634

segmentation. Besides, it would be interesting to assign bijectivity directly on the deformable635

convolution network[6] to see if preserving the topology of the deformed filter can help with636

the performance. Also, designing a bijective transformer for 3D volume deep learning would637

also be valuable, especially for medical images.638
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