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Fig. 1. A 0.1km2 urban area (roughly 0.25km × 0.53km) is 3D-reconstructed from 1,423 images captured by a single-camera drone (DJI Phantom 4 RTK) flying
along a continuously-planned path by our method: 18,491𝑚 in length and color-coded from blue to red with the two small flags indicating the start and end
points. Our path planning algorithm optimizes scene coverage, scene capture efficiency , and path quality , resulting in fewer sharp turns, shorter path lengths, as
well as higher 3D reconstruction quality (see the geometric and appearance details in the zoomed-in inset pairs above) at a reduced flight time.

We introduce the first path-oriented drone trajectory planning algorithm,
which performs continuous (i.e., dense) image acquisition along an aerial path
and explicitly factors path quality into an optimization along with scene
reconstruction quality. Specifically, our method takes as input a rough 3D
scene proxy and produces a drone trajectory and image capturing setup,
which efficiently yields a high-quality reconstruction of the 3D scene based
on three optimization objectives: one to maximize the amount of 3D scene
information that can be acquired along the entirety of the trajectory, an-
other to optimize the scene capturing efficiency by maximizing the scene
information that can be acquired per unit length along the aerial path, and
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the last one to minimize the total turning angles along the aerial path, so
as to reduce the number of sharp turns. Our search scheme is based on the
rapidly-exploring random tree framework, resulting in a final trajectory as a
single path through the search tree. Unlike state-of-the-art works, our joint
optimization for view selection and path planning is performed in a single
step. We comprehensively evaluate our method not only on benchmark vir-
tual datasets as in existing works but also on several large-scale real urban
scenes. We demonstrate that the continuous paths optimized by our method
can effectively reduce onsite acquisition cost using drones, while achieving
high-fidelity 3D reconstruction, compared to existing planning methods and
oblique photography, a mature and popular industry solution.

CCS Concepts: • Computing methodologies → Computer graphics;
Shape modeling; Mesh geometry models.
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1 INTRODUCTION
Large-scale 3D scene acquisition at the urban city level using un-
manned aerial vehicles (UAVs) or drones is becoming awell-practiced
technology serving a wide variety of applications. With an increas-
ing demand for high-fidelity captures of urban scenes with complex
structures, modern techniques typically take a coarse-to-fine ap-
proach. First, a rough and conservative geometry prior, referred to
as a scene proxy, is produced from an initial flight pass or satellite
images, while the main effort for acquisition planning is devoted to
the next phase for a detailed scene reconstruction [Hepp et al. 2018b;
Roberts et al. 2017; Smith et al. 2018; Zhou et al. 2020]. Ideally, a
dense view sampling is needed to reconstruct a large 3D scene with
fine details. In practice, however, a drone’s flight time is generally
limited to 25-30 minutes by battery power, hence the main objective
of drone trajectory planning is to best capture the whole 3D scene,
maximize reconstruction quality while minimizing flight time.

Existing planning methods, e.g., [Hepp et al. 2018b; Roberts et al.
2017; Smith et al. 2018; Zhou et al. 2020], have focused on finding a
set of “good” locations for image capture, which would serve as can-
didate viewpoints to compute the drone flight path in a subsequent
step. The path is typically obtained using heuristic solutions, such
as those developed for the traveling salesman problem (TSP), to pass
through all selected viewpoints. By decoupling path construction
from view optimization, which focuses on the reconstruction quality
attributed to individual viewpoints, these approaches do not take
advantage of the continuity of the path or account for path qual-
ity, which can significantly impact the acquisition effort needed in
the field. In particular, paths obtained this way often contain many
sharp turns, and as the drone flies across such turns, the necessary
deceleration leads to a slow-down, while the ensuing acceleration
consumes extra battery power. In reality, a drone is well equipped
to capture images in quick succession without compromising its
flying speed or image quality. Images captured this way represent a
dense view sampling, which is a useful property of the acquisition
setup that has not been utilized in previous works.

In this paper, we introduce a path-oriented drone trajectory plan-
ning algorithm, which performs dense image acquisition along an
aerial path and aims to optimize both the scene reconstruction qual-
ity and path quality (see, e.g., Fig. 1). In contrast to all previous
works, our dense acquisition can be considered as a continuous path
planning process, subject to limits of the image capture rate of the
drone camera. Specifically, our algorithm takes as input a rough
3D scene proxy, performs path planning directly in the 3D space,
and produces a drone trajectory and image capturing setup, which
efficiently yields a high-quality reconstruction of the 3D scene.
Our optimization objective is defined by three criteria: the first

one to maximize the amount of scene information that can be ac-
quired along the entirety of the trajectory, the second one to optimize
the scene capturing efficiency by maximizing the scene information
that can be acquired per unit length along the flight path, and the
third one to minimize the total turning angles along the flight path,
so as to avoid sharp turns with path quality in mind. We formulate
our search scheme for the optimal trajectory based on the rapidly-
exploring random trees (RRT) framework [Karaman and Frazzoli
2011; Naderi et al. 2015], where the final trajectory is a single path

Fig. 2. An illustration contrasting a shortest path constructed from indepen-
dently selected good viewpoints (left) vs. an aerial path computed using our
continuous planning approach (right). Our path on the right is optimized to
have fewer sharp turns while ensuring a good view coverage of the scene.

extracted from the maintained tree. Different from previous works,
our scheme jointly considers viewpoint planning and path quality
in a single stage, leading to a significant reduction in path length
and flight time, particularly for large-scale scenes.
As illustrated in Fig. 2, our continuous path planning approach,

coupled with a dense view sampling, results in a more extensive
exploration of the drone camera’s flying space, compared to discrete
view planning [Hepp et al. 2018b; Roberts et al. 2017; Smith et al.
2018; Zhou et al. 2020], to obtain a high-quality 3D scene reconstruc-
tion. During the reconstruction step, it is, however, not necessary to
input all the captured images as they may contain redundant scene
information, especially for five-camera drones. So, we select a subset
of images for scene reconstruction. In the end, the reconstruction
effort, as reflected by the number of input images used, is compara-
ble to existing methods, but the path quality is improved, leading to
higher acquisition efficiency; check more details in Section 6.
We perform a comprehensive evaluation of our path planning

and scene reconstruction framework using both benchmark virtual
datasets [Smith et al. 2018; Zhou et al. 2020] and real large-scale
urban scenes. We demonstrate that the continuous paths optimized
by our method can effectively reduce the onsite acquisition cost us-
ing drones, while achieving high-fidelity 3D reconstruction (Fig. 1),
compared to state-of-the-art aerial planning methods and oblique
photography, a mature and popular industry solution. In particular,
our approach excels at recovering finer-level details of the capture
scenes, owing to the dense view sampling and image-to-image cor-
respondences as a result of the continuous scene acquisition.

To sum up, the main contributions of our work are:
• Our work is the first that introduces a path-oriented drone
trajectory planning algorithm, which performs continuous
(i.e., dense) image capture, aiming to optimize both the scene
reconstruction quality and path quality.
• Our optimization jointly performs view selection and path
planning in a single step, unlike previous works, which solve
an orienteering problem in separate computation steps.
• We leverage a view information field (VIF) with various strate-
gies to approximate and speed up the computation of the
information gain in a continuous search space.
• With the aid of a field experiment, we formulate and incorpo-
rate the relationship between drone movement and battery
consumption into two cost functions for a joint optimization
in our path planning algorithm.
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2 RELATED WORK
In this section, we cover prior works on image-based scene acquisi-
tion and reconstruction, especially those related to view selection
and path planning for urban scene capture. We also describe the
RRT framework from robotic path planning.

Image-based scene reconstruction and view selection. Image-based
scene reconstruction [Knapitsch et al. 2017] is a fundamental prob-
lem in computer graphics. Much success has been achieved through
structure from motion [Snavely et al. 2006, 2008] and multi-view
stereo [Furukawa and Hernández 2015]. For efficient and high-
quality reconstruction, view selection has been intensely studied
[Beder and Steffen 2006; Furukawa et al. 2010; Hornung et al. 2008;
Mauro et al. 2014; Mendez Maldonado et al. 2016; Moreels and
Perona 2007; Mostegel et al. 2016; Rumpler et al. 2011]. Mauro et
al. [2014] develop a measure for image importance and use it for
view selection. Hornung et al. [2008] select views by maximizing
their coverage of a dynamically-updated proxy. Mendez Maldon-
ado et al. [2016] introduce a next-best-view optimization to trade
off between coverage and accuracy. All of these works focus on
designing heuristic view selection models for scene reconstruction
instead of the image acquisition process, which involves planning
the camera paths and orientations to capture the scene beforehand.

Image-based scene acquisition and path planning. When capturing
large-scale urban scenes using drones, the planning task becomes es-
pecially tedious due to scene complexity and immense flying space.
To help novice users, Xie et al. [2018] propose a handy planning tool
for quadrotors to easily capture compelling aerial outdoor videos.
Yang et al. [2018] convert a user-drawn 2D sketch on a flat map
into a feasible and desirable camera path in 5D. Roberts and Hanra-
han [2016] design a method to revise an infeasible quadrotor camera
trajectory into a similar but feasible one. Balampanis et al. [2017]
and Nielsen et al. [2019] employ shape decomposition to generate
shorter 2D paths for energy saving. To date, many commercial soft-
ware products, such as DJI-Terra1, PIX4D2, 3DR3, have become quite
mature in path planning for oblique photography in 2D.
Without any prior scene information, earlier works [Maver and

Bajcsy 1993; Whaite and Ferrie 1997] focus on planning efficient
paths that maximize scene coverage. Heng et al. [2015] develop an
efficient scheme for simultaneous visual exploration and coverage
over an unknown environment. Huang et al. [2018b] plan the next
best view by solving a multi-view stereo problem using an iterative
method. Hepp et al. [2018a] apply a convolution neural network
to score the usefulness of future viewpoints. Huang et al. [2018a]
teach a drone to capture human actions cinematically by extracting
skeleton points and devising a real-time planning strategy, respect-
ing the drone’s physical constraints. Kuang et al. [2020] perform an
autonomous urban scene path planning by utilizing the top view
to initialize a path and then refining the path iteratively via SLAM.
Schmid et al. [2020] employ real-time rapidly-exploring random
trees [Naderi et al. 2015] to obtain a maximal coverage of the scene

1https://www.dji.com/dji-terra
2https://www.pix4d.com
3https://www.3dr.com

with minimal travel cost during exploration. Liu et al. [2021] intro-
duce a visual-geometric fusion learning method for simultaneous
drone navigation and height mapping.
Unlike these works, our path planning solution targets efficient

urban scene capture and high-quality 3D reconstruction with fine
details. To date, most works that share a similar goal require two
drone flights: a rough scene proxy was obtained either by the first
flight or reconstructed from satellite images [Zhou et al. 2020]. Given
the proxy, Schmid et al. [2012] obtain a rich set of candidate views
by creating a front-parallel camera for each triangle of the proxy.
Roberts et al. [2017] introduce submodularity [Krause and Golovin
2014] to select the views and obtain the final trajectory by solving an
orienteering problem. Hepp et al. [2018b] maximize the information
gains at selected views while limiting the travel distance. Smith
et al. [2018] design a heuristic system by considering the overlap
between images and the coverage of the target scene, while Koch et
al. [2019] account for semantic information. Most recently, Zhou et
al. [2020] introduce redundancy minimization into the view opti-
mization to achieve comparable scene reconstructions with much
fewer images. Common to all of these works is the decoupling of
view selection and path computation to connect selected views
thereafter. In contrast, our method jointly optimizes the view selec-
tion and path planning in a single step, considering both the scene
reconstruction and path quality, along the entire flying path.

Rapidly-exploring Random Trees (RRT). The main idea of the RRT
framework [LaValle 1998] is to iteratively add a random point in
the free movement space to expand a search tree until a feasible
path is found from the given start point to the target end point.
Karaman et al. [2011] introduce an optimized version of RRT, coined
the RRT*, where the key is a “rewiring” operator, which dynami-
cally reconnects nodes in the tree in each RRT iteration, so as to
minimize the path distance from the root; hence, a shorter path
to travel to the target can be obtained. Later, Naderi et al. [2015]
develop a real-time RRT* algorithm for planning paths in dynamic
environments with moving obstacles. On top of these, there have
been many other RRT variants [Bircher et al. 2016; Gammell et al.
2014; Schmid et al. 2020; Selin et al. 2019; Witting et al. 2018], e.g., to
enhance the point sampling, to better explore the unmapped space,
etc. Among these works, a recent one by Schmid et al. [2020] adopts
RT-RRT* [Naderi et al. 2015] for scene exploration. However, unlike
our work, their goal is to explore every part of the scene instead of
capturing the scene with a drone for high-quality 3D reconstruction.
Also, their method did not consider prior information of the scene
for optimizing the trajectory path during the scene exploration.

In our work, we present a new application of RRT* for planning
scene-capturing aerial paths for fine-detail 3D urban reconstruction.
Compared to prior works, our problem has a different formulation
and optimization objective, as we have to maximize scene coverage
and achieve a fine 3D reconstruction while considering the aerial
acquisition cost. We shall elaborate on all these in Section 5.

3 OVERVIEW
Given a rough proxy geometry which approximates a target urban
scene, our planning algorithm computes an optimal aerial path for
a flying drone to continuously capture images of the scene for 3D
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Fig. 3. Algorithm overview. Given a coarse proxy of the target scene (a), we first build a view information field (VIF) (b) to encode continuous view coverage
information of the scene in the free space. Then, we start our path planning algorithm to iteratively sample viewpoints continuously in free space using the VIF
and expand our random search tree (c) to explore the space, until we find a path (d) that adequately covers the scene. In (b), the red (high) to blue (low) colors
indicate the amount of scene information. In (c), the red dot indicates the root of the tree and the black dots indicate the current best branch. In (d), the brown
dots are waypoints and the blue dots are viewpoints in-between. In (e), some challenging regions of the final reconstructed scene are shown in blown-up views.

reconstruction. With the input proxy, we can locate the free-flying
space (or safe space) and predict how different viewpoints in this
space contribute to the scene reconstruction. There are various ways
to create the proxy, e.g., reconstructed from images captured by a
crude drone fly, computed from satellite images [Zhou et al. 2020],
or provided by commercial map suppliers.

To simplify the presentation of our method, we first assume that
the drone has multiple cameras or a 360-degree camera system, so
it does not need to rotate itself for capturing different directions
at a viewpoint. In this setting, we do not need to consider camera
orientations at a viewpoint; a viewpoint can be simply represented
as a 3D location. As most commercial drones are still with a single-
camera system, we will describe how our method can be adopted
for single-camera drones at the end of Section 5.
As outlined in Fig. 3, given the input proxy (a), we first build a

view information field (VIF), as shown in Fig. 3(b), to encode the
scene information covered by viewpoints in the free space. This VIF
is pre-computed to enable a fast and continuous query of view cover-
age information during path planning. Next, from a user-defined or
automatically generated starting point as the root, we expand a ran-
dom search tree, i.e., the RRT, as illustrated in Fig. 3(c), by iteratively
sampling random viewpoints, connecting them (as nodes) to the
currently expanded tree, and optimizing node connections to max-
imize path efficiency and quality based on our objective function.
We repeat this process until we find an aerial path that adequately
covers the scene. The final trajectory is the best single path through
the search tree maintained by the algorithm.
Technically, an aerial path consists of a sequence of waypoints,

through which the drone will fly in the free space. In this work, our
path planning method considers continuous image capture of the
scene in the path, so our viewpoints locate not only at the waypoints
but also in-between successive waypoints; see Fig. 3(d) for the brown
and blue dots that illustrate waypoints and viewpoints.
Aside from the continuous (i.e., dense) image acquisition, a key

novelty and also a main difference between our approach and state-
of-the-art previous works [Hepp et al. 2018b; Roberts et al. 2017;
Smith et al. 2018; Zhou et al. 2020] is that we formulate and per-
form a joint optimization for view selection and path planning in a
single step, rather than in different computation stages. With path

Fig. 4. The reconstructability model estimates the view coverage of surface
points {𝑠𝑖 } on scene proxy by viewpoints 𝐶1, 𝐶2, and 𝐶3; 𝐻𝑖 is the hemi-
sphere at 𝑠𝑖 ; and 𝐷

𝑗

𝑖
is a disk on 𝐻𝑖 that indicates the coverage of 𝑠𝑖 by𝐶 𝑗 ;

its size depends on the distance from 𝑠𝑖 to𝐶 𝑗 and𝐶 𝑗 ’s elevation angle.

quality explicitly factored in our optimization objectives, the final
paths planned by our method are smooth and efficient, covering the
scene with far fewer sharp turns, as shown in Fig. 3(d). The final
reconstructed scene model is complete and well preserves visually
appealing geometry details, as shown in Fig. 3(e).

4 BUILDING BLOCKS FOR PATH PLANNING
Before giving details to our path planning algorithm, we first present
in this section important building blocks in the algorithm.

4.1 Scene Reconstructability
Reconstructability is a crucial heuristic model employed in many
path planning methods [Hepp et al. 2018b; Roberts et al. 2017; Smith
et al. 2018; Zhou et al. 2020] for estimating the scene coverage and
viewpoint correspondence. While different works may use different
names for the term, e.g., viewpoint information and coverage model,
the underlying formulations are essentially based on multi-view
stereo. In this work, we aim for continuous image capture along
the aerial path, so we do not have specific demand on viewpoint
correspondence and focus reconstructability on the scene coverage.

First, we follow [Roberts et al. 2017] to uniformly sample 𝑁 sur-
face points {𝑠𝑖 }𝑁𝑖=1 on the scene proxy (see Fig. 3(a)), and at each 𝑠𝑖 ,
set up a hemisphere 𝐻𝑖 that aligns with the surface normal. Then,
as illustrated in Fig. 4, the coverage of the local area around 𝑠𝑖 by
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viewpoint 𝑐 𝑗 is represented as disk 𝐷 𝑗
𝑖
on 𝐻𝑖 , such that 𝐷 𝑗

𝑖
centers

at the intersection between 𝐻𝑖 and line 𝑐 𝑗 -𝑠𝑖 and its size varies with
the distance between 𝑐 𝑗 and 𝑠𝑖 and the elevation angle of the view-
point relative to the surface. At each 𝑠𝑖 , by computing the union of
the 𝐷 𝑗

𝑖
’s for all the viewpoints that can see 𝑠𝑖 , we can obtain the

reconstructability of point 𝑠𝑖 by the viewpoint set:

𝑟 (𝑠𝑖 ) =
∫⋃

𝑗
𝐷

𝑗

𝑖

𝜔𝑖 (ℎ)𝑑ℎ, (1)

where𝜔𝑖 (ℎ) is a weight function of locationℎ on hemisphere. Please
refer to the supplementary material for details on 𝐷 𝑗

𝑖
and 𝜔𝑖 (ℎ).

4.2 Information Gain
Eq. (1) estimates the scene reconstructability subject to local areas
in the scene. To plan aerial paths, we need to further estimate scene
reconstructability subject to viewpoints in free space to evaluate
howwell different viewpoints contribute to the scene reconstruction.
Particularly, to plan aerial paths with continuous image capture, we
propose to estimate how well a new viewpoint or a new trajectory
segment contributes to improving the scene reconstructability.
Mathematically, we first define 𝑐 𝑗 as a new viewpoint to be ap-

pended to an aerial path with a sequence of viewpoints {𝑐1, ..., 𝑐 𝑗−1}.
So, the information gain of 𝑐 𝑗 is the amount of new scene informa-
tion that 𝑐 𝑗 brings over the scene information already captured by
{𝑐1, ..., 𝑐 𝑗−1}. To do so, we should estimate the scene reconstructabil-
ity over the entire scene proxy instead of just at a specific surface
point. Hence, we define the information gain of viewpoint 𝑐 𝑗 as

𝑔(𝑐 𝑗 |𝑐 𝑗−1, . . . , 𝑐1) =
∑︁
𝑖

∫
𝐷

𝑗

𝑖
\
𝑗−1⋃
𝑘=1

𝐷𝑘
𝑖

𝜔𝑖 (ℎ)𝑑ℎ, (2)

where we sum the information gained specifically by viewpoint
𝑐 𝑗 over all surface points 𝑠𝑖 while excluding the coverage disks
contributed by the previous viewpoints, i.e., 𝐷1

𝑖
, ..., 𝐷 𝑗−1

𝑖
. Though

mathematically equivalent to 𝑓𝑖 in [Roberts et al. 2017], the formu-
lation intuitively expresses the information gain explicitly with the
coverage disks 𝐷 𝑗

𝑖
and {𝐷𝑘

𝑖
} 𝑗−1
𝑘=1 in the evaluation of Eq. (2).

In our continuous path planning algorithm (Section 5), we need
to compare how much new information that we can gain when
re-routing the aerial path via different waypoints. So, we further
extend Eq. (2) to estimate the information gain subject to the addition
of a new waypoint, say 𝑤𝑘 , appended to an existing path. Here,
we first denote {𝑐1, 𝑐2, ..., 𝑐𝑚} as the viewpoints sampled along an
existing path from the first waypoint 𝑤1 all the way to the last
waypoint𝑤𝑘−1 (where 𝑐1 locates at𝑤1 and 𝑐𝑚 locates at𝑤𝑘−1) and
we denote {𝑐𝑚+1, 𝑐𝑚+2, ..., 𝑐𝑚+𝑛} as the viewpoints sampled along
the new trajectory segment after waypoint 𝑤𝑘−1 up to waypoint
𝑤𝑘 (where 𝑐𝑚+𝑛 locates at𝑤𝑘 ). Using these notations, we can then
use Eq. (2) to express the information gain of the new trajectory
segment from waypoint𝑤𝑘−1 to waypoint𝑤𝑘 :

𝑔∗ (𝑤𝑘 ) =
𝑚+𝑛∑︁
𝑙=𝑚+1

𝑔(𝑐𝑙 |𝑐𝑙−1, . . . , 𝑐1) . (3)

Essentially, Eq. (3) sums up the information gain of all the viewpoints
sampled in the new trajectory segment from𝑤𝑘−1 to𝑤𝑘 .

ALGORITHM 1: Initializing the View Information Field.
input : scene proxy and free space
output : view information field F
Sample surface points {𝑠𝑖 }𝑁𝑖=1 on scene proxy
Sample viewpoints {𝑐 𝑗 }𝑀𝑗=1 in free space
for each 𝑐 𝑗 do

for each 𝑠𝑖 do
if 𝑠𝑖 is visible to 𝑐 𝑗 then

Set 𝐷 𝑗

𝑖
←− compute reconstructability of 𝑠𝑖 by 𝑐 𝑗

else
Set 𝐷 𝑗

𝑖
as a zero-radius disk

end
end
F(𝑐 𝑗 ) ←− {𝐷 𝑗

1 , 𝐷
𝑗

2 , . . . , 𝐷
𝑗

𝑁
}

end

4.3 View Information Field
To plan an aerial path, our algorithm needs to dynamically re-route
waypoints to optimize for path quality and scene reconstructabil-
ity (details in Section 5). The calculation of information gain is a
core and time-consuming part in the algorithm. So, we propose
to precompute the view information field (VIF) to enable fast and
continuous evaluation of scene reconstructability in the free space.

To start, we discretize the free space by uniformly sampling a set
of viewpoints {𝑐 𝑗 }𝑀𝑗=1, and calculate coverage disk 𝐷 𝑗

𝑖
for each pair

of viewpoint 𝑐 𝑗 (in free space) and surface point 𝑠𝑖 (on scene proxy).
We then define the view informationfield (over a discrete point set
{𝑐 𝑗 }) as a mapD : 𝑐 𝑗 −→ {𝐷 𝑗1, 𝐷

𝑗

2, . . . , 𝐷
𝑗

𝑁
}; see Algorithm 1 for the

procedure outline. With VIF, we can efficiently estimate the scene
reconstructability continuously at any viewpoint in the free space
by interpolating information at nearby viewpoints. Discretizing
the entire free space will lead to a large number of viewpoints
and a huge VIF, in which many viewpoints would have similar
reconstructability information. So, we build an offset VIF onlywithin
a thin manifold outside the scene proxy in the 3D free space.
The complexity of the VIF is 𝑂 (𝑀𝑁 ), where 𝑀 is the number

of viewpoints and 𝑁 is the number of surface points. The major
computation with the VIF lies in Algorithm 5 (see Section 5.2); while
large scenes and dense discretization generally lead to high storage
and computing cost, the VIF computation is fast due to its simple
structure. Particularly, we adopt a KD-tree to quickly locate nearest
cameras in the VIF to form the line segments in Eq. (3). Please refer
to the supplementary material for the implementation details.

4.4 Travel Cost along an Aerial Path
According to empirical tests and pilot experiences, the mechanical
propulsion for flying drones consumes much more energy than
image capture. Hence, to consider the scene capturing efficiency in
our optimization, we further analyze the drone’s travel cost: (i) cost
𝑐𝑡 to turn a drone to align with the trajectory segment towards the
next waypoint; and (ii) cost 𝑐𝑚 to fly straight to the next waypoint. In
practice, the relation between the travel time and distance is roughly
linear, whereas the relation between the travel time and turning
angle is not. To incorporate these relations into path planning, we
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Fig. 5. Scatter plots that show travel time vs. distance (left) and travel time
vs. turning angle (right) for flying a drone in an aerial path.

perform a field experiment to measure (i) the travel time by trying
each specific turning angle 240 times and (ii) the travel time by
repeating a straight-line flight 6 times for each specific distance.
Also, we set the drone’s flying speed to 8m/s and collect the data in
this experiment on a sunny day with little wind.
Fig. 5 shows the scatter plots of travel time over travel distance

(left) and over turning angle (right). Observing the results, we then
model the travel cost for drone movement and turning as

𝑐𝑚 (𝑤𝑘 ) = |𝑤𝑘 −𝑤𝑘−1 |, (4)
𝑐𝑡 (𝑤𝑘 ) = 2.25 − 0.16(𝜃𝑘 − 𝜋)2, (5)

where 𝜃𝑘 is the turning angle at waypoint𝑤𝑘 . Due to the nonlinear-
ity in turning time, we construct Eq. (5) by fitting the data samples
with a 2nd-degree polynomial. Also, to measure 𝑐𝑡 , we perform a
turning of the drone after a 50m flight, so we have to subtract the
time taken for the associated straight-line fly. Furthermore, different
turning angles and different speeds can lead to a different amount
of centrifugal force acting on the drone when it turns. Hence, to
maintain the drone’s position precision and flight attitude, the drone
has to lower its speed more for turns that are sharper.

Note that in practice, the drone’s flying paths are usually smooth,
not in a zigzag, as illustrated in Fig. 1 and Fig. 3. Hence, the turning
angle 𝜃𝑘 simply refers to the deviation angle between successive
waypoints. The purpose of the above formulation is for estimating
the travel cost in the optimization objective.

5 AERIAL PATH PLANNING
This section details our path planning algorithm. To start, we present
our objective function (Section 5.1) for guiding the algorithm to
find the aerial path. Then, we present our algorithm (Section 5.2)
and a post-processing step for image selection (Section 5.3). Lastly,
we adapt our algorithm for single-camera drones (Section 5.4).

5.1 Objective Function
We formulate the following objective (which is to be maximized) to
guide the path planning process:

𝐸 (T ) = 𝐸𝑔 (T ) + 𝛼𝑒𝐸𝑒 (T ) − 𝛼𝑡𝐸𝑡 (T ) , (6)
with

𝐸𝑔 (T) =
𝑛∑︁

𝑘=2
𝑔∗ (𝑤𝑘 ), 𝐸𝑒 (T) =

𝑛∑
𝑘=2

𝑔∗ (𝑤𝑘 )

𝑛∑
𝑘=2

𝑐𝑚 (𝑤𝑘 )
, 𝐸𝑡 (T) =

𝑛−1∑︁
𝑘=2

𝑐𝑡 (𝑤𝑘 ) .

Here, {𝑤1,𝑤2, ...,𝑤𝑛} are waypoints along trajectory T , and 𝛼𝑒 and
𝛼𝑡 are weights on the 𝐸𝑒 and 𝐸𝑡 terms, respectively.

In this formulation, 𝐸𝑔 measures the information gain of the
whole trajectory, so it encourages the algorithm to find a trajectory
that maximally covers the scene, whereas 𝐸𝑒 measures the scene
information acquired per unit length along the trajectory, so maxi-
mizing it encourages a higher scene capturing efficiency. With the
length normalization, 𝐸𝑒 helps to optimize trajectories in a global
sense instead of greedily maximizing individual nodes; note that
simply subtracting lengths would make the tree favor long sub-trees
and too sensitive to 𝛼𝑒 . Lastly, 𝐸𝑡 sums up the turning angles at
all waypoints in the trajectory; by subtracting 𝐸𝑡 (Eq. (6)), we can
reduce the amount of turns and encourage a smoother trajectory.
By this means, we can reduce the need to slow down the drone for
making sharp turns and the drone can fly mostly at a constant speed
to further minimize the overall scene capture time.
Note that, although both 𝐸𝑔 and 𝐸𝑒 employ information gain in

their formulations, they have different goals. Without 𝐸𝑒 , we may
produce a trajectory that is unnecessarily long with some inefficient
trajectory segments. We will present an experiment in Section 6 to
demonstrate the contributions of 𝐸𝑒 and 𝐸𝑡 to the results.

5.2 Path Planning Procedure
Next, we present our path planning algorithm, which is inspired
by [Naderi et al. 2015] and follows the Rapidly-exploring Random
Tree (RRT*) framework [Gammell et al. 2014][Karaman and Frazzoli
2011], just as [Naderi et al. 2015]. The uniqueness of our algorithm
is that it plans aerial paths with continuous image capture, in which
we consider the scene reconstructability in the random tree, make
use of our objective to guide the tree construction, and develop
various strategies to accelerate the computation. Further, compared
with existing methods on planning aerial paths for scene reconstruc-
tion, our algorithm jointly samples viewpoints and plans the path,
optimizing both the scene reconstruction quality and path quality.
Before going into the details, we first outline our algorithm (see

Algorithm 2). Its input includes a precomputed VIF (Section 4) and a
user-specified starting location, i.e.,𝑤start . To begin, our algorithm
initializes random tree 𝑇 with𝑤start as its root node. Then, it goes
into a loop that iteratively randomizes a location in the free space,
regards the location as a newwaypoint𝑤new , connect𝑤new as a new
node to𝑇 , and restructure (or rewire)𝑇 , such that𝑇 is optimized for
our objective; details of each step will be given later. In random tree
𝑇 , each node is a candidate waypoint and each edge is a candidate
trajectory segment, so every path from 𝑤start to a leaf node is a
candidate trajectory. Hence, every time we add or connect a new
node𝑤new to𝑇 , we should dynamically rewire the node connections
in 𝑇 to maximize the objective value for every path in 𝑇 , especially
those related to 𝑤new . By doing so, we can iteratively expand the
random tree to explore the free space, and jointly sample viewpoints
and plan the aerial path. In the end, the algorithm stops when it finds
a path in 𝑇 that sufficiently covers the scene or when the number
of iterations exceeds a budget.

Next, we present further details in the main loop of our algorithm
alongside the pseudocode outlined in Algorithm 2:
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ALGORITHM 2: Trajectory Planning.
input :𝑤start , the starting node/waypoint

{𝑠1, . . . , 𝑠𝑁 }, surface points on scene proxy
F, precomputed view information field
ℎ,𝐺 and 𝐾 , parameters for loop termination

output :Tbest , trajectory for scene capture
Initialize random tree𝑇 with 𝑤start as its root node;
while percentage of surface points whose reconstructability (Eq. (1)) is
greater than ℎ is ≤ 𝐺 and # iterations of this while loop is < 𝐾 do
𝑤new ←− Random_Sample(F,𝑇 ); % see ALGORITHM 3
N ←− Find_Neighbors(𝑇 ,𝑤new ); % see ALGORITHM 4
if N is empty then

𝑤p ←− Find the node in𝑇 that is nearest to 𝑤new and
reachable to 𝑤new within the free space;

else
𝑤p ←− Find the node in N that maximizes Eq. (6) for
trajectory {𝑤start , ..., 𝑤p, 𝑤new };

end
Connect 𝑤new to𝑇 by setting 𝑤p as 𝑤new ’s parent;
Rewire_Tree(𝑇 ,𝑤new ); % see ALGORITHM 5
if every 50 iterations then

Rewire_Tree(𝑇 ,𝑤start );
end

end
𝑆 ←− Find trajectories in𝑇 with sufficient coverage on {𝑠𝑖 };
Tbest ←− Find the trajectory in 𝑆 that maximizes Eq. (6);

ALGORITHM 3: Random_Sample.
input : F, precomputed view information field

𝑇 , the random tree to be rewired
output :𝑤new , a random location in free space
while true do

𝑤new ←− randomize a location in F;
if 𝑤new is reachable from any node in𝑇 through the free space
without hitting or getting close to the scene proxy then

break;
end

end

ALGORITHM 4: Find_Neighbors.
input :𝑇 , the current random tree

𝑤, a new node to be added to𝑇 or to be rewired
output :N, a subset of nodes in𝑇 that are close to 𝑤new
N ←− find nodes in𝑇 within a radius of 10% scene size from 𝑤;
for each 𝑛 ∈ N do

if 𝑤 is not reachable from 𝑛 through the free space without hitting
or getting close to the scene proxy then
N ←− N − 𝑛;

end
end

• First, we randomly sample location𝑤new in free space with
the constraint that𝑤new is reachable from𝑇 through the free
space (see Algorithm 3). This ensures that there is at least
one collision-free trajectory segment from𝑤new to 𝑇 .

ALGORITHM 5: Rewire_Tree.
input :𝑇 , the random tree to be rewired

𝑤, a node in𝑇 to start the rewiring
output :𝑇 , the updated random tree
queue𝑄 ←− 𝑤;
while𝑄 is not empty & within time budget do

𝑤 ←− Pop_Front(𝑄);
N ←− Find_Neighbors(𝑇 ,𝑤) - Find_Ancestors(𝑤);
for each 𝑤𝑖 ∈ N do

Try to connect 𝑤𝑖 to 𝑤 by setting 𝑤 as 𝑤𝑖 ’s parent;
if 𝐸 ( {𝑤start , ..., 𝑤𝑖 }) increases after the reconnection then

Set 𝑤 as 𝑤𝑖 ’s parent;
Push 𝑤𝑖 to𝑄 ;

end
end

end

Fig. 6. Illustration of the Rewire_Tree procedure (please find details in
Algorithm 5). Left: The input to Rewire_Tree is a node (say 𝑤; in yellow)
in the random tree. Middle: First, Rewire_Tree finds a candidate set (in
blue), which are neighbors of 𝑤, while excluding 𝑤’s ancestors (in grey)
to avoid creating loops in the tree. Right: For each node in the candidate
set, Rewire_Tree connects the node to 𝑤 as its parent, if doing so improves
the objective value of the path from the root to the node. If a reconnection
happens, Rewire_Tree will repeat itself on the rewired node (in orange).

• Next, Find_Neighbors (see Algorithm 4) employs a k-NN
search to find nodes in𝑇 that are close to𝑤new and also reach-
able from𝑤new . Then, we connect𝑤new to either the nearest
node in 𝑇 or a neighbor node found by Find_Neighbors as
𝑤new ’s parent in 𝑇 ; see Algorithm 2 for details.
• The current connection between𝑤new and 𝑇 is unlikely opti-
mal for our objective, so we have to rewire the node connec-
tions in 𝑇 starting from𝑤new to optimize 𝑇 ; see Algorithm 5
for details and Fig. 6 for a running example. Note that when
rewiring a node, we have to exclude its ancestors since oth-
erwise, we could create a loop in the tree. Also, rewiring 𝑇
only from 𝑤new may not fully optimize the entire tree, we
thus rewire 𝑇 from its root every 50 iterations to trade off
between quality and speed.

Termination. The loop terminates either when a coverage thresh-
old is met or when a maximum loop iteration count 𝐾 is reached.
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Fig. 7. A running example of our path planning algorithm. The bigger green dot near the middle marks the root node, whereas the red and yellow dots mark
the internal and leaf nodes, respectively, in the random tree. Also, the yellow dots and the blue edges in-between mark the dominant (optimal) path at the
moment. The colors on the scene proxy reveal the amount of scene reconstructability (red (low) to blue (high)) that remains under the dominant path.

The latter condition follows the standard RRT* framework and
guarantees that the algorithm eventually terminates. The coverage
condition is defined by the percentage of sampled surface points
whose reconstructability, defined in Eq. (1), exceeds a threshold ℎ.
The algorithm terminates when that percentage exceeds𝐺 , e.g., 95%,
where 𝐾 ,𝐺 , and ℎ are hyperparameters whose settings are provided
in Section 6. Note that we do not have a theoretical proof that the
coverage increases monotonically with iteration count; see an em-
pirical analysis in supplementary material, where we show how
various performance measures vary as the algorithm progresses.

Computation cost. Note that Algorithm 2 is quite expensive com-
putationally. The main cost lies in the computation of Eq. (6) in
the main algorithm and the rewiring step for the search tree (Al-
gorithm 5). Particularly, we have to evaluate the reconstructability
of every surface point for every node in the tree. This computation
involves the information gain in Eq. (3), which can be accelerated
with the VIF. Hence, we precompute the VIF (Section 4.3) so that
we can employ it to quickly obtain all the coverage disk 𝐷𝑖 of a
new waypoint 𝑤new (as a viewpoint) on every surface point 𝑠𝑖 in
the scene. The same also applies to new viewpoints sampled along
the new trajectory segment that connects𝑤new to its parent node.
Additional details on speed-up strategies in our implementation can
be found in the supplementary material.

Fig. 7 shows a running example of our algorithm. Usually, the
random tree starts with a single dominant path. After more itera-
tions, nodes may not be added to expand the dominant path, since
doing so could reduce 𝐸𝑒 and thus the overall objective. Hence, path
planning can be seen as an iterative process that gradually refines
the dominant path, which may sometimes disappear and reappear
elsewhere. Curious readers may refer to supplementary material for
a convergence analysis. The elementary operations in our algorithm
are node addition and tree rewiring. In general, the computational
complexity is 𝑂 (𝑚𝑙𝑜𝑔(𝑚)), where m is the number of nodes and
memory complexity is 𝑂 (𝑚). These complexities are independent
of the scene size but planning time surely increases for larger and
more complex scenes, which require more nodes to cover.

5.3 Post-Selection of Scene Images
With continuous image capture along with the aerial path, we typi-
cally will obtain a dense image set, which provides scene information
more than necessary for reconstructing the scene. In case of a multi-
camera drone, the number of captured images would be even larger.
As suggested in [Hepp et al. 2018b; Seitz et al. 2006], using excessive

images may even degrade the reconstruction quality. Therefore, we
propose to select an image subset before the scene reconstruction.

Denoting I as the dense image set captured by aerial path Tbest ,
we aim to select a subset of I with minimal reduction in scene
reconstructability. To do so, we initialize the final image set I ′ as
an empty set and iteratively pick images one at a time from I to
put into I ′. In each iteration, we pick the image that is remained in
I that can bring the largest information gain based on Eq. (2). Note
that when we calculate Eq. (2), we compute the information gain
relative to the viewpoints of the selected images inI ′. We repeat this
process until the reconstructability of 𝐺% surface points is greater
than threshold ℎ (same as Algorithm 2). Note that post selection
should not be used for culling the path before the flight, since it
will destroy the smoothness of the aerial path. Also, we include
post selection mainly for five-camera drones, which unavoidably
generate a huge amount of redundant scene information.

5.4 Adaptation for Single-Camera Drones
So far, we assume that the drone has multiple fixed cameras, so it can
capture a panoramic view of the scene at any location in an aerial
path. However, most conventional portable drones contain only a
single camera stabilized by a 3-axis (pitch, roll, yaw) mechanical
gimbal, so earlier works in aerial path planning typically study
under such a setting, i.e., optimizing 5D viewpoints. To enhance the
practical usage and facilitate a fair comparison with the existing
techniques, we can adapt our scheme to support single-camera path
planning with the following modifications in the algorithm:

• First, we can regard viewpoints in free space as 5D vectors,
each with a viewpoint position (in R3) in the free space and
a view vector (in S2). Then, we can extend the VIF from
3D to 5D by discretizing the view space S2 with a set of
sample points, each with a 3D VIF; see Fig. 8 for an illustration.
In our implementation, we discretize the view-vector space
by evenly sampling 𝑉 points over S2. Note that, for single-
camera drones, the complexity of VIF is 𝑂 (𝑀𝑁𝑉 ), since we
further need to consider 𝑉 view directions at each camera
point in the VIF; see supplementary material for details.
• Second, we need to assign a view vector to each node (way-
point) in the tree to represent the drone’s camera direction.
Then, we can obtain the view vector along an edge (trajectory
segment) in the tree by interpolation.
• Third, while the view vector at the root of the tree is given by
the user, we have to determine the view vector at each node
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Fig. 8. To adapt our method for single-camera drones, we extend the 3D view information field to become a 5D view information field to account for the view
direction (S2) and position (R3) of viewpoints in the free space (left). Note that, aerial paths planned for single-camera drones are usually longer (and more
complex) than paths planned for multi-camera drones (for the same scene) since the drone has to travel longer to capture different aspects of the scene.

of the tree. In Algorithm 2, whenever we create a new edge
in the tree (i.e., when we create a new waypoint and connect
it to the tree, or when we rewire a waypoint to connect to
a new parent), we have to determine the view vector at the
waypoint. We do so by finding the view vector that maxi-
mizes the information gain of the waypoint over its parent,
i.e., Eq. (3). Yet, we need to constrain the view vector not to
deviate too much from its parent’s view vector (unless the
two waypoints are far apart); otherwise, the drone’s camera
may rotate too fast and produce blurry images. Please refer
to supplementary material for details.

6 RESULTS AND EVALUATION
In this section, we show quantitative and qualitative results and
compare our work to state-of-the-art methods, on both synthetic
benchmark datasets and several large-scale real scenes.

Datasets. We tested the differentmethods on two kinds of datasets.
First, following the state of the art [Zhou et al. 2020], we employed
the following three benchmarks: NY-1, UK-1 [Smith et al. 2018],
and Bridge-1 [Zhou et al. 2020], with the associated scene proxies
(2.5D) kindly provided by Zhou et al. [2020]. These benchmarks are
synthetic and provide ground-truth information for quantitative
evaluation. At the same time, the covered scenes are small in size
and contain much less geometric details than real scenes. Hence, we
also tested the methods on several large-scale real scenes, ranging
from 0.1km2 to 0.5km2 in size; see Section 6.3 for details.

Implementation details. Our method was implemented in C++ and
run on a computer with a 2.4GHz Intel Xeon E5-2680 CPU, 64GB
RAM, and NVIDIA Quadro M5000. To capture real scenes, we exper-
imented with two drone systems: DJI M300RTK with PSDK 102S,
which is a five-camera drone with a focal length of 35mm, and DJI
Phantom 4 RTK, which is a single-camera drone with a focal length
ranged from 8.8 to 24mm. Lastly, we use the commercial software
RealityCapture to reconstruct the 3D mesh of the scene from the
captured images. For a fair evaluation, we use the default setting of
this software to reconstruct scenes in all of our experiments.

Parameters. In our objective function, we empirically set 𝛼𝑒 = 50
and 𝛼𝑡 = 20 for capture with a five-camera drone and 𝛼𝑒 = 8 and
𝛼𝑡 = 10 for capture with a single-camera drone. Also, we limit the
maximum number of iterations (𝐾 ) in Algorithm 2 to 400 and set the
time budget (maximum number of rewiring) in Algorithm 5 to 20.
Depending on the size of the scene, we sample 𝑁 = 800, 1200, or 1600

surface points on the scene proxy, and build a view information field
with𝑀 = 800, 1000, or 2000 viewpoints (3D) and 17 view directions
(2D). In Algorithm 2, we set ℎ = 30 and 𝐺 = 95 for the benchmark
datasets, which are smaller in size, and ℎ = 15 and 𝐺 = 85 for real
scenes, which are larger in size and have more complex geometry,
to balance the trajectory length and reconstruction quality. Based
on the feedback from our pilot and the experiments, these settings
are sufficient for scenes of size 0.1km2.

Evaluation metrics. To quantitatively evaluate the reconstruction
quality using the benchmarks, we used the following two metrics
provided by [Smith et al. 2018]:
• Error measures how close the reconstructed mesh is when
compared with the ground truth provided in the benchmark.
For each point 𝑝𝑖 in the reconstructed mesh, we find its min-
imum distance 𝑑𝑖 to the points in the ground truth. Then,
we determine the 90% error (and the 95% error), which is the
smallest distance (in meters) in all 𝑑𝑖 , such that 90% (and 95%)
of distances {𝑑𝑖 } are shorter than it.
• Completeness measures the coverage of the ground truth by
the reconstructed mesh. Its formulation is opposite to error.
For each point 𝑞 𝑗 in the ground truth, we find its minimum
distance 𝑑 𝑗 to the points in the reconstructed mesh. Given
distance 𝑑 (in meters), we determine the percentage of points
in the ground truth whose 𝑑 𝑗 is smaller than 𝑑 .

For the error metric, a smaller (distance) value indicates a better
result, whereas, for the completeness metric, a larger (percentage)
value indicates a better result. Besides, we evaluate the quality of the
planned paths in terms of trajectory length, number of waypoints,
flight time spent on movement (estimated by Eq. (4)), and flight time
spent on turning (estimated by Eq. (5)).

6.1 Self Evaluation
Path quality vs. terms in objective function. First, to demonstrate

how the 𝐸𝑒 and 𝐸𝑡 terms in our objective (Eq. (6)) contribute to
improve the quality of the planned paths, we conduct an experiment
by using our method to plan aerial paths with different forms of
objective functions: (i) only 𝐸𝑔 ; (ii) only 𝐸𝑔 and 𝐸𝑒 ; (iii) only 𝐸𝑔 and
𝐸𝑡 ; and (iv) full objective as in Eq. (6). Here, we employ the NY-1
dataset and compute the planned paths for a single-camera drone,
meaning that the planned paths are likely more complex.
From the results reported in Table 1, we can first see that using

only 𝐸𝑔 leads to the creation of an unnecessarily long aerial path,
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Table 1. Self evaluation #1. We explore how the terms in our objective
function (Eq. (6)) affect path quality, measured by path length, number of
waypoints, and estimated time spent on movement and turning.

Objective Length ↓ #Waypoints ↓ Movement ↓ Turning ↓
only 𝐸𝑔 3,274 m 117 614 sec. 215 sec.

only 𝐸𝑔 and 𝐸𝑒 2,298 m 117 455 sec. 168 sec.
only 𝐸𝑔 and 𝐸𝑡 2,700 m 89 488 sec. 151 sec.
full Eq. (6) 2,151 m 84 384 sec. 115 sec.
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Fig. 9. Scene reconstruction quality (in terms of completeness & error) vs.
the number of images employed in the 3D reconstruction.

since 𝐸𝑔 simply maximizes the scene information that one can ac-
quire. If we include 𝐸𝑒 , we can improve the scene capture efficiency
by shortening the path, while ensuring the optimized path suffi-
ciently covers the scene. Next, comparing the first vs. third rows, or
second vs. last rows in Table 1, we can see that the 𝐸𝑡 term helps to
reduce the amount of time spent on turning the drone (estimated
based on Eq. (5) from our field experiments), as well as other path
quantities. Hence, putting all three terms together leads to the best
quality path, i.e., shorter path length, fewer waypoints, less sharp
turns, and shorter movement time, as reported in Table 1.

Reconstruction quality vs. number of images. Using more images
generally means having more scene information in the 3D recon-
struction. However, having too many images could degrade the
reconstruction quality, as suggested in [Hepp et al. 2018b; Seitz et al.
2006]. In this experiment, we evaluate how the number of images
selected in the post-selection step affects the reconstruction quality
in terms of completeness and error. Here, we use the NY-1 dataset
and plan aerial paths using a different number of images. Also, we
employ a five-camera drone, as it will introduce much redundancy.

Fig. 9 reports the results. For completeness, it is straightforward
to see that more images clearly leads to higher scene coverage,
so completeness increases strictly with the number of images. For
error, we can see from the associated plot that its value drops only
initially with the number of images but increases when there are
too many images. Note that more images may introduce newly-
reconstructed surface regions and these regions may not be accurate
due to insufficient coverage. Hence, for points in these regions, it
could be hard to find correspondence from the ground-truth mesh,
thus leading to higher error. Yet, we would highlight that as shown
in the plot’s vertical range (see Fig. 9), the errors are typically small,
only in the range of two to three centimeters.

Table 2. Impact of using proxies of different precisions on our path-pathing
algorithm. Top: randomly perturbing the building heights in proxies. Bottom:
smooth building boundaries by morphological operator “dilation”.

Height Num. Length Error ↓ [m] Completeness ↑ [%]
Perturb Images [m] 90% 95% 0.020m 0.050m 0.075m
0% 252 2,151 0.030 0.261 43.50 52.89 57.42
10% 252 2,250 0.037 0.807 43.87 52.43 57.28
20% 255 2,276 0.039 0.668 43.43 51.95 57.05

Building Num. Length Error ↓ [m] Completeness ↑ [%]
Boundary Images [m] 90% 95% 0.020m 0.050m 0.075m
original 252 2,151 0.030 0.261 43.50 52.89 57.42
minor 252 2,290 0.038 0.728 42.11 51.48 55.40
medium 252 2,293 0.039 0.994 41.71 51.48 56.00
rough 254 2,283 0.039 0.792 42.37 51.87 56.36

Impact by imperfect proxies. In this work, we employ 2.5D scene
proxies, in which each building is represented by a height value
and a boundary given on the map. These proxies can be readily
generated by the commercial map suppliers, but they may contain
errors due to inaccuracies in building heights and boundaries. To
evaluate the impact of imperfect proxies on our method, we perform
an experiment with a similar setting as [Zhou et al. 2020], i.e., using
a single-camera drone and testing on the NY-1 benchmark. First, we
randomly perturb the building heights to different extents. On the
other hand, we smooth and expand the building boundaries in image
space using the morphological operator dilation to different extents.
Then, we use our method to plan aerial paths with these proxies
and evaluate the quality of the resulting scene reconstructions.

Table 2 summarizes the results. Overall, using lower quality scene
proxies unavoidably reduces the scene reconstruction quality, espe-
cially the error term. Yet, for the completeness term, it drops little
for perturbation in building heights and only slightly for changes
in building boundaries, showing the robustness of our method on
completeness in scene coverage.

Path planning time. Further, we study the running time of Al-
gorithm 2. To compare with the previous works, which assume a
single-camera drone, we adopt a single-camera drone in this ex-
periment. For NY-1, UK-1, and Bridge-1, our algorithm takes 5.3
minutes, 10.5 minutes, and 8.9 minutes, respectively, to plan the
paths. Though these numbers are slightly longer than the time taken
by previous works [Smith et al. 2018; Zhou et al. 2020], our algo-
rithm plans continuous paths, while previous works do not. Also,
these numbers are not significant, when compared to the hours that
are needed to reconstruct the scenes from the captured images.

6.2 Results and Comparisons on Synthetic Data
Next, we compare ourmethod on synthetic datasets (NY-1, UK-1, and
Bridge-1) with several state-of-the-art methods, including [Smith
et al. 2018], [Zhou et al. 2020], and oblique photography (OP), which
is a commercial technology for real scene capture. In this experiment,
we use a single-camera drone setting for comparison with previous
methods. In details, we obtained the paths planned by [Zhou et al.
2020] from the authors. For [Smith et al. 2018], we obtained the
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Fig. 10. Comparing the quality of the paths produced by our method, [Zhou et al. 2020], and [Smith et al. 2018] on NY-1, UK-1, and Bridge-1. Our paths are of
higher quality with smaller #waypoints, as well as shorter turning and overall flight times. We also show numbers for oblique photography (OP), but for
reference only, since it requires a five-camera drone to capture more images and make fewer turns, while others use only a single-camera drone.

Table 3. Comparing the reconstruction quality (Error) and scene converage
(Completeness) of paths produced by different methods (Smith: [Smith
et al. 2018]; Zhou: [Zhou et al. 2020]; and OP: oblique photography) on the
synthetic datasets NY-1, UK-1, and Bridge-1. We highlight the first- and
second-place performances using bold and italic fonts, respectively.

Scene Method Num. Length Error ↓ [m] Completeness ↑ [%]
Images [m] 90% 95% 0.020m 0.050m 0.075m

NY-1

Smith 433 2,808 0.053 0.792 36.01 44.74 49.47
Zhou 248 1,816 0.028 0.315 40.24 47.57 52.04
OP 1,297 3,264 0.044 0.296 36.58 44.74 49.33
Ours 252 2,151 0.030 0.261 43.50 52.89 57.42

UK-1

Smith 923 7,819 0.028 0.051 32.04 37.74 40.62
Zhou 418 4,648 0.028 0.049 30.75 35.96 40.29
OP 2,056 7,844 0.057 0.103 30.52 35.11 38.25
Ours 420 5,483 0.034 0.067 30.60 36.08 53.12

Bridge-1

Smith 565 4,569 0.014 0.022 49.47 55.73 59.07
Zhou 372 4,217 0.015 0.023 52.78 59.81 63.06
OP 1,232 5,565 0.029 0.043 50.57 57.66 61.36
Ours 380 5,415 0.018 0.027 51.64 60.48 70.41

paths planned for NY-1 and UK-1 from the project webpage and the
path for Bridge-1 from the authors of [Zhou et al. 2020]. Finally, for
oblique photography (OP), the path is obtained as a simple sweep
pattern, alternating between left-to-right and right-to-left, to cover
a designated area; see the path in cyan color shown at the top-
right corner of Fig. 13. In OP, the path simply locates at a fixed
height above all buildings in the entire scene and the drone does not
move to a lower height. Hence, OP typically requires a five-camera
drone to capture more images to ensure a sufficient coverage of
the scene. Furthermore, we follow the practice in [Zhou et al. 2020]
and [Smith et al. 2018] to set the parameters for OP: focal_length =
30𝑚𝑚; overlap_ratio = 15%; and the flying height for NY-1, UK-1,
and Bridge-1 are 50𝑚, 70𝑚, and 70𝑚, respectively.

Quantitative results. Table 3 and Fig. 10 summarize the quanti-
tative evaluation results, where the third column in Table 3 shows
the actual number of images used for 3D reconstruction in Reality-
Capture. In terms of reconstruction quality, we can see that overall,
our method achieves comparable results in the various measures
using a similar number of images as [Zhou et al. 2020], but much

fewer images than [Smith et al. 2018] and oblique photography. Our
results typically attain higher scores in completeness, i.e., scene
coverage, reflecting its ability to better capture scene geometries
including their details. The performance numbers for the “Error”
measures are generally comparable, except for the “95%” numbers
for the NY-1 dataset, where our method outperforms the others sig-
nificantly. In all other cases, the performance discrepancies between
all three methods are all within margins of a few centimeters.
In terms of path quality, while the length of the paths produced

by our method may not be shorter than others, the estimated flight
times, both turning and movement for our paths, are clearly shorter,
as reported by the plots shown in Fig. 10. Since our paths are more
smooth, they could be longer than the paths produced by other
methods, but yet, the flight time can be shorter, since the drone can
fly at a mostly constant speed. Note that OP is served as a reference
in Fig. 10, since its sweep paths are at a fixed height and make far
fewer turns than others; hence, the resulting reconstructions are
often more rough and less complete, as revealed in Table 3.

Visual comparison and detail recovery. We visually compare the
aerial paths and the 3D scene reconstructions associated with the
four methods on the three datasets in Fig. 11. Please pay special
attention to our method’s superior ability to recover finer-level
details compared to the other methods. This is a clear and con-
sistent trend, since the scenes were captured continuously using
our method. Even when we only sample a subset of the images for
reconstruction, the denser view sampling, and hence the denser
image-to-image correspondences, compared to the alternatives, still
lead to better detail reconstruction.

6.3 Results and Comparisons on Real Scenes
Lastly, we use drones to capture images of four large-scale real
scenes. We plan aerial paths for each scene using various methods,
conduct field trips to capture each scene with different planned
paths, and reconstruct the scenes from each set of capture images.

Comparison with [Zhou et al. 2020]. We use our method and [Zhou
et al. 2020] to plan aerial paths for two large-scale urban areas,
namely ArtSci and Library, using a single-camera drone setting.

Submission ID: 144. 2021-09-03 00:36. Page 11 of 1–15. ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.



1:12 • H. Zhang, Y. Yao, K. Xie, C. Fu, H. Zhang, and H. Huang

Fig. 11. Visual comparisons of the planned aerial paths and resulting 3D
reconstructions (see particularly the blown-up views) produced by our
method, [Zhou et al. 2020], [Smith et al. 2018], and oblique photography
(OP) on the synthetic datasets: NY-1, UK-1, and Bridge-1 (top to bottom).
Due to space limit, please find the paths of OP in supplementary material.

Table 4. Comparing the quality of the aerial paths planned by [Zhou et al.
2020] (Zhou) and by our method on real scenes ArtSci and Library. 100%
means the battery is fully charged.

Scene Method Length ↓ Flight Time ↓ Battery ↓
[m] [min] Consump.%

ArtSci [Zhou et al. 2020] 7,233 41.0 146%
Ours 4,137 13.7 50%

Library [Zhou et al. 2020] 6,531 28.1 108%
Ours 4,627 15.5 50%

Table 5. Comparing the quality of the aerial paths planned by oblique
photography (OP) and our method on real scenes Residency and High-rise.
Here 100% means that the battery is fully charged.

Scene Method Length ↓ Flight Time ↓ Battery ↓
[m] [min] Consump.%

Residency OP 8,269 34.0 486%
Ours 7,665 22.0 304%

High-rise OP 15,852 51.0 1,112%
Ours 13,916 42.0 801%

Fig. 12 shows the planned aerial plans and the resulting 3D recon-
structions, whereas Table 4 reports the flight details. From Table 4,
we can see the superior quality of the paths planned by our method,
particularly in terms of flight time and battery consumption. The
blown-up views in Fig. 12 also confirms the visual quality of the 3D
reconstructions produced from our captured images, both in terms
of scene coverage and the recovery of finer-level geometric details.

Comparison with oblique photography (OP). Next, we plan aerial
paths independently using our method and oblique photography
(OP) for capturing two large-scale urban areas, namely Residency
(0.1km2; Fig. 13) and High-rise (0.5km2; Fig. 14), using a five-camera
drone. Fig. 13 (top) shows the two aerial paths for capturing Res-
idency, in which the one for OP (in green) is planned using com-
mercial software DJI-Terra. Using each path, we captured the same
urban area using the same five-camera drone and measured the time
taken, path length, and battery consumption of each flight. Since the
path of OP is uniform spacing, the drone may need to fly further out
of the target scene area to capture lower portions of the buildings
in the scene. Our planner avoids this, since drones can fly at a lower
altitude and our path better fits the building distribution to reduce
unnecessary flight. These features make our method more efficient.

The other scene High-rise shown in Fig. 14 features a large-scale
urban area, in which the buildings have large variation in height.
Since OP needs to set a fixed flying height well above all build-
ings, the drone cannot capture sufficient details in this scene, espe-
cially for the lower-height building parts. The paths planned by our
method do not suffer from such problems.

Table 5 reports the overall quantitative comparison results, show-
ing that the aerial paths planned by our method clearly have shorter
lengths, and more importantly, shorter flight time, for both large-
scale real scenes. Also, the resulting battery consumption by our
paths is comparatively lower. Fig. 13 (bottom) and Fig. 14 (bottom)
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Fig. 12. Visual comparison on ArtSci (left : 76,900𝑚2) and Library (right : 69,471𝑚2). In each scene, first column shows the result of our methods, whereas
second column shows the result of [Zhou et al. 2020]. Please zoom in to look at the blown-up views to compare the details in the 3D reconstructions.

Fig. 13. The scene Residency is of 0.1𝑘𝑚2. Top left: our planned aerial path (from blue to red). Top right: aerial path (in green, from blue dot to red dot) by
oblique photography (OP). Bottom: “detail” comparison on this scene; 3D reconstruction results of our method (first row) and OP (second row).

further show 3D scene reconstructions produced from images cap-
tured by different aerial paths. From the blown-up views, we can see
that images captured by our path lead to higher 3D reconstruction
quality, especially in finer-level details.

7 CONCLUSION, DISCUSSION, AND FUTURE WORK
We developed the first continuous aerial path planning framework
for high-quality 3D urban scene capture and reconstruction. We

take advantage of the drone’s ability to capture images in quick
succession along its flying path, which enables a dense view sam-
pling of the scene to improve reconstruction quality. Also, our path
optimization jointly considers the path quality to avoid sharp turns
to better utilize the drone’s limited battery power and flying time.
We demonstrate the superiority of method over state-of-the-art
alternatives, in terms of path quality and reconstruction quality,
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Fig. 14. The scene High-rise is the largest one in size, 0.5km2 (0.71km × 0.87km), covering buildings and other structures with large variation in height. The
tallest building is 140𝑚 high, so the aerial path for oblique photography (OP) is set at a height of 170m, while our path can direct the drone to adaptively
fly between 80m and 170m elevations, to best capture the scene details. The top row shows the entire 3D scene reconstructions produced from images
captured using our path (top left) and OP (top right). Due to the complexity of the scene, we show four sets of blown-up views at the bottom for a better visual
comparison between the fine details reconstructed. Also, we show plain renderings without colors for better assessment of the reconstructed geometry.

especially for the recovery of geometric details, on both synthetic
benchmark datasets and large-scale real-world scans.

A key assumption made by our current approach is the availabil-
ity of a rough scene proxy. Extending our method to accommodate
unknown 3D environments can be challenging but is a worthy pur-
suit. On the technical front, our setup of the view information field
is rather time-consuming and our objective function enforces the
tree search to go into high depth, both contributing to a relatively
long path planning time. Moreover, our current greedy scheme for
selecting the final set of images for scene reconstruction is still quite

simplistic and elementary. We expect that a more sophisticated ap-
proach would lead to further improvement in the trade off between
scene reconstruction quality and image usage.

In addition to addressing the above limitations, we would also like
to explore learning-based approaches to continuous path planning.
Indeed, there have been recent attempts at using reinforcement
learning to tackle view planning problems [Kaba et al. 2017] and
for obtaining the next best views in the context of scan comple-
tion [Peralta et al. 2020]. Network training may be conducted over
procedurally generated urban scene data [Smelik et al. 2014]. We
expect that the predictive power of a trained network can be more
apt at path planning over unknown urban environments.
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