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A. CONVERGENCE ANALYSIS
This section presents an empirical analysis on how the following
four measures vary as the algorithm progresses: (i) scene cover-
age, i.e., percentage of sampled surface points whose reconstructabil-
ity (Eq. (1)) exceeds threshold h; (ii) objective value (Eq. (6)); (iii)
trajectory length (Eq. (4)); and (iv) total cost for turning angles
(Eq. (5)). Please note that Eqs. (1-6) in this supplementary material
are referred to the corresponding equations in the main paper.
Fig. 1 shows the plots when running our algorithm on the UK-

1 dataset. From the plots, we can see that all quantities increase
initially, when the algorithm starts to build up the random tree with
more nodes. Later, when the scene coverage improves to a level
close to and beyond threshold percentageG , the optimization model
starts to minimize the trajectory length and total cost for turning
angles, as shown by the drops near the end of the bottom two plots.
Yet, our algorithm can converge in just 150 iterations.

B. RECONSTRUCTION QUALITY VS. PATH LENGTH
This section presents an additional experiment that explores the
tradeoff between the 3D scene reconstruction quality and the length
of the aerial path. To explore their relationship, we make use of
threshold h (see Algorithm 2 in the main paper), which is the mini-
mum reconstructability value required for capturing each surface
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Fig. 1. Plots that show how the various measures (see above) vary as the
algorithm progresses on the UK-1 dataset.

point on the scene proxy. Generally, a larger h requires more view
coverage on the surface points, thus demanding for a longer aerial
path and longer flight time for capturing more details. Hence, we
can adjust h to tradeoff between the scene reconstruction quality
and the path length in this experiment.
In more detail, we perform this experiment on the NY-1 bench-

mark dataset using a five-camera drone and plan aerial paths with
different values of h. Table 1 reports the results, showing that longer
aerial paths do not necessarily help to increase the accuracy of the
3D reconstruction, as revealed by the “error” measure. Yet, a larger
h certainly increases the scene coverage and leads to a more com-
plete 3D reconstruction, as revealed by the “completeness” measure.
Importantly, it is worth to note that longer aerial paths may not
necessarily capture more useful information.

C. IMPLEMENTATION DETAIL
Next, we provide further implementation details of our method.

(i) Details on D j
i and ωi (h). First, we give details of D j

i and ωi (h)
in Eq. (1), which are from [Roberts et al. 2017], for self-contained-
ness. For disk D

j
i , its radius decays exponentially as the associated
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Fig. 2. The aerial paths of oblique photography for benchmarks NY-1, UK-1 and Bridge-1 from left to right.

Fig. 3. Large views of the 3D reconstructions on NY-1 by our method (top-left), [Zhou et al. 2020] (top-right), [Smith et al. 2018] (bottom-left), and oblique
photography (bottom-right).

camera moves away from surface point si . Here, a cone is formed
with D

j
i as its base and si as its tip, and D

j
i ’s radius is adjusted by

the cone’s apex half angle:

θ
j
i = θmax 2

−max(t ji −t0,0)
thalf , (7)

where θmax is the maximum apex half angle in radians; t ji is the
distance from camera to si in meters; t0 is a threshold distance

in meters, below which θ
j
i does not change; and thalf is the decay

half-life of the half angle in meters. In the implementation, we set
θmax =

π
90 radians, t0 = 20m, and thalf = 25m. For weight function

ωi (h), it is set to have a cosine-weighted falloff, i.e., ωj (h) = cos(αh ),
where αh is the angle between the hemisphere pole and the vector
from the hemisphere origin (si ) to the hemisphere location h.
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Fig. 4. Large views of the 3D reconstructions on UK-1 by our method (top-left), [Zhou et al. 2020] (top-right), [Smith et al. 2018] (bottom-left), and oblique
photography (bottom-right).

Fig. 5. Large views of the 3D reconstructions on Bridge-1 by our method (top-left), [Zhou et al. 2020] (top-right), [Smith et al. 2018] (bottom-left), and oblique
photography (bottom-right).
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Table 1. Exploring the tradeoff between 3D reconstruction quality and path
length. The results reveal that longer aerial paths generally improves the
completeness but it may not improve the reconstruction accuracy.

Threshold Num. Length Error [m] Completeness [%]
Images [m] 90% 95% 0.020m 0.050m 0.075m

0.05 176 814 0.029 0.162 36.37 42.48 46.67
0.10 284 1,779 0.033 0.351 36.79 43.89 47.48
0.15 428 1,870 0.021 0.087 40.92 47.61 51.97
0.20 768 2,378 0.028 0.062 41.64 46.76 51.84
0.25 1,057 3,368 0.020 0.079 41.28 47.33 52.37

(ii) Hemisphere discretization. To efficiently store and compute
the coverage disks, we discretize hemisphereHi as Nh points evenly
on Hi and represent a coverage disk as an Nh -bit vector; each bit
marks if the associated point on Hi is inside or outside D

j
i . In our

implementation, Nh is 256, so a coverage disk consumes only 16
bytes. Also, this representation allows us to implement the disk
union and disk subtraction efficiently as bit-wise operations.

(iii) Coverage disk storage. A crucial element in the computation
of reconstructability and information gain is the union of coverage
disks that accumulates along the trajectory from the root of the tree.
Here, we propose to store ∪jD

j
i per surface point per node in tree

as an Nh -bit vector. This can speed up various computations, e.g.,
when we rewire a node to a new parent, we can update its ∪jD

j
i

based on the ∪jD
j
i of its parent, rather than recomputing its ∪jD

j
i

all the way from the root. Also, this strategy enables us to readily
compute the reconstructability of any si at any node.
Note that after we finish this research work, we found that the

supplementary material of [Roberts et al. 2017] describes a approach
called coverage indicator matrix, which is similar to what we pre-
sented above. Yet, the overall approach is different. In our method,
our VIF focuses on defining a continuous field for representing the
information distribution in the free space so that we can compute
the information gain efficiently and continuously in space.

(iv) View vector assignment for single-camera drone. For efficient
computation, we need to discretize the space of view vectors, which
is the lower half of S2 (since the camera needs not look upward).
In detail, we discrete the longitude range in S2 by eight directions:
{0, π4 ,

π
2 , . . . ,

7π
4 } and the latitude range in S2 by three directions:

{0, π4 ,
π
2 } (in the lower hemisphere). In this way, the number of

samples in the view-vector space is 17 (which is V in the main
paper). During the view vector assignment for single-camera drone
systems, we traverse each possible view vector and select the one
that maximizes Eq. (3). We constrain the view vector not to deviate
too much from the one in previous viewpoint by constraining the
maximum angular difference between subsequent view vectors.
Note that the maximum allowed angular difference depends on the
distance between the two adjacent nodes in the random tree; if the
distance is short, the maximum allowed angular difference should
be small, such that the drone does not need to make a large turn for
short-distance travel.

D. OBLIQUE PHOTOGRAPHY PATHS ON BENCHMARKS
To supplement Fig. 11 in the main paper, we show the paths of
oblique photography for the three synthetic benchmark datasets,
NY-1, UK-1, and Bridge-1, in Fig. 2 of this supplementary material.

E. LARGE VIEWS ON BENCHMARK RESULTS
Due to space limit in the main paper, we present Figs. 3, 4, and 5 in
this supplementary material to show large views of the 3D recon-
struction results on the three benchmark datasets.
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