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Abstract. Medical image segmentation, which aims to automatically
extract anatomical or pathological structures, plays a key role in computer-
aided diagnosis and disease analysis. Despite the problem has been widely
studied, existing methods are prone to topological errors. In medical
imaging, the topology of the structure, such as the kidney or lung, is
usually known. Preserving the topology of the structure in the segmen-
tation process is of utmost importance for accurate image analysis. In
this work, a novel learning-based segmentation model is proposed. A
topology-preserving segmentation network (TPSN) is trained to give an ac-
curate segmentation result of an input image that preserves the prescribed
topology. TPSN is a deformation-based model that yields a deformation
map through a UNet, which takes the medical image and a template
mask as inputs. The main idea is to deform a template mask describing
the prescribed topology by a diffeomorphism to segment the object in the
image. The topology of the shape in the template mask is well preserved
under the diffeomorphic map. The diffeomorphic property of the map is
controlled by introducing a regularization term related to the Jacobian
in the loss function. As such, a topology-preserving segmentation result
can be guaranteed. Furthermore, a multi-scale TPSN is developed in this
paper that incorporates multi-level information of images to produce more
precise segmentation results. To evaluate our method, we applied the 2D
TPSN on Ham10000 and 3D TPSN on KiTS21. Experimental results
illustrate our method outperforms the baseline UNet segmentation model
with/without connected-component analysis (CCA) by both the dice
score and IoU score. Besides, results show that our method can produce
reliable results even in challenging cases, where pixel-wise segmentation
models by UNet and CCA fail to obtain accurate results.

1 Introduction

Automated anatomical segmentation is an important procedure for many clinical
applications, such as diagnosing diseases and monitoring disease progression.
Recent developments in deep learning have achieved great success in medical
image segmentation. Once successfully trained, the deep neural network can
segment the input image in real-time. Nevertheless, the major challenge is the



2 Han Zhang and Lok Ming Lui

accuracy of the segmentation result. Accurate segmentation is essential for
meaningful medical image analysis. In particular, the accurate topology of the
segmented anatomical structure is crucial for the measurement of the structure.
Unfortunately, most existing algorithms are prone to topological errors, causing
mis-segmentation with multiple components or thin connections. In practical
situations, the topologies of anatomical structures are often known. For instance,
structures like the kidney or liver are known to be simply-connected. We are
thus motivated to develop a deep segmentation model with a topological prior
that learns to segment with correct topology. State-of-the-art deep segmentation
approaches commonly assign a label to each pixel and can be formulated as a pixel-
wise classification problem. Under this formulation, the topological constraint
is hard to be enforced. Deformation-based models[1,12,17,16], which deform a
template mask by a suitable deformation map to segment the image, have been
recently proposed. The topological prior can be easily incorporated using this
approach, which will be adopted in this work.

In this paper, a learning-based topology-preserving segmentation framework
that learns to segment an input image with a given topological prior is proposed.
TPSN takes the image to be segmented and a template mask describing the
prescribed topology as inputs. It outputs a diffeomorphic deformation map that
deforms the template mask to segment the input image. For instance, suppose
the kidney in an image is to be extracted, the template shape can be chosen
as a simple disk, and will then be deformed by the diffeomorphism to enclose
the kidney in the input image. The diffeomorphic deformation map ensures
the topology of the segmented shape is consistent with that of the template.
The diffeomorphic property of the map is enforced by regularizing the Jacobian
and the Laplacian of the map. With the trained network, the segmentation
process can be done efficiently and the topology of the segmented shape is
guaranteed to be consistent with the prescribed topological prior. To further
improve the segmentation result, a multi-level topology-preserving segmentation
network (mlTPSN), which incorporates multi-level information by producing
masks from coarse to fine, is introduced. At the low-fidelity level, a low-resolution
version of the image is fitted into the network to predict a rough mask. In the
higher levels, rough masks are used as the template mask to generate a more
precise mask to segment the higher-resolution image. This multi-level strategy
is proved to be effective to enhance the accuracy of the segmentation result. To
evaluate the proposed TPSN and mlTPSN, experiments are carried out on both
2D and 3D medical images. Our methods outperform the baseline UNet with and
without connected component analysis. In challenging situations when the UNet
segmentation fails, our proposed networks can still yield satisfying and reliable
results. These demonstrate the efficacy of our proposed models.

Our contribution of this paper is three-fold: (1) We introduced a deep-learning
segmentation network that learns to segment an image accurately with correct
topology according to the prescribed topological prior. (2) We designed a special
regularization, namely the ϵ-ReLU Jacobian loss, which can effectively enforce the
bijectivity of the deformation map and prevent heavy shrinkage. (3) We proposed
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a multi-scale topology-preserving segmentation network that incorporates multi-
level information of images to produce more precise results.

2 Related Work

Medical image segmentation has been widely studied. Numerous deep learning
based models have been recently proposed. UNet and its variants achieve great
success[10,9,3]. In particular, 3D-UNet [3] and VNet [9] proposed by Çiçeket al.
and Milletariet al. respectively are successful for 3D medical image segmentation.
In the challenge of KiTS19[4], nnUNet [6] has achieved outstanding results using
UNet and a series of practical pre- and post- processing strategies. Besides, [7]
proposed to use one UNet to predict an initial mask and apply an addtional one
to refine the segmentation result.

Mathematical models for image segmentation have also been extesnively stud-
ied. [8] proposed an active contour model that delineates the object boundary.
Chan and Vese[2] generalized active contour model using a level set formulation.
Shape prior segmentation have been investigated. Segmentation with topological
prior has shown to be effective in enhanching the accurary [4]. Chan et al. [1]
introduced a deformation based segmenation model using quasiconformal maps
for topology preserving segmentation. Siu et al. [12] introduced to incorporate the
dihedral angle in the model for segmentation with partial convexity prior and topo-
logical prior. Zhang et al. [16] proposed a deformation based topology-preserving
segmentation model through registration using the hyperelastic regularization.
The model has been further extended to incorporate the convexity prior[17].
Zhou et al. [18] propsoed a model, which accounts for the relative location and
size prior statistically. Hu et al. [5] designed a continuous-valued loss function
to enforce the topological constraint. Shit et al. [11] introduced clDice to en-
hance the connectedness in the segmentation for tubular structures. Wyburd et
al. [15] enforce topology-preserving from given prior by compositing a series of
diffeomorphic layers into network architecture.

3 Method

In this section, we describe our proposed learning-based segmentation framework
in detail. Conventional segmentation approaches are commonly formulated as a
pixel-wise classification problem, with which the topological constraint is hard
to be integrated. In this work, our strategy is to train a deep neural network to
transform a template mask capturing the prescribed topological information by
a diffeomorphism to segment the input image.
Network Architecture The pipeline and architecture of our proposed model are
illustrated in Figure 1. The top diagram shows our proposed Topology-preserving
Segmentation Network (TPSN). TPSN takes the image I to be segmented and
the template masks Mtemp as the inputs. The template mask is a binary image
describing the prior topological information. For instance, if the structure to be
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Fig. 1: The framework and architecture for TPSN and multi-level TPSN

extracted is simply-connected, Mtemp can be chosen as a binary image containing
a 2D disk or 3D ball for 2D and 3D segmentation respectively. The network
architecture is a UNet. It outputs the deformation mapping f . This output can
be regarded as a 2-channel or 3-channel image capturing the coordinates of the
deformation mapping for 2D or 3D segmentation respectively. Mtemp is then
deformed by f to obtain a transformed mask Mpred, which segments the structure
in the image I.

The Loss function To train the network, a suitable loss function is necessary.
The loss function L aims to enforce the diffeomorphic property of the output
deformation map, as well as ensuring that Mpred is close to the ground truth
segmentation result from the training data. L consists of the fidelity term and
regularization term. The fidelity term is chosen as the Dice loss that drives Mpred

to the ground truth. To enforce the diffeomorphic property, regularization of
the Jacobian is performed. A map is diffeomorphic if its Jacobian is positive
everywhere [16]. The following ϵ-RELU Jacobian regularizer is applied:

LJac(f) = ||ReLUϵ(−det∇(f))||1 (1)

where ReLUϵ(x) = Relu(x+ ϵ). LJac promotes a positive Jacobian determinant
of f that is greater than ϵ everywhere. This prevents flips (non-bijectivity) and
heavy shrinkage of f . When ϵ is small, larger deformation can be acheived but
more squeezing can be observed. When fine details are to be extracted, ϵ can be
tuned to a smaller value. To further enhance the smoothness of f , the Laplacian
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loss is adopted:
LLap(f) = ||∆(f)||1 (2)

Then, the final overall loss is as:

L = λDiceLJac(f)Dice(Moutput,Mlabel) + λJac.LJac(f) + λLap.LLap(f) (3)

where LDice,det∇(f) and ∆(f) are Dice loss, the Jacobian determinant of f and
Laplacian of f weighted by λDice, λJac. and λLap. respectively. The derivatives
in the Jacobian and Laplacian are computed by forwarding difference and central
difference schemes respectively.

Multi-level TPSN To enhance the robustness and accuracy of our proposed
model, a multi-level strategy is adopted to build the multi-level topology-preserving
segmentation network (ml-TPSN). The pipeline and architecture of ml-TPSN
are shown in Figure 1 bottom. The original image I is downsampled into I

′
and

I
′′
, which are respectively 1/2 and 1/4 of the original dimension. I

′′
is fitted into

TPSN with a coarse template mask of the same dimension as I
′′

to output a
predicted segmentation mask. The predicted segmentation mask gives a rough
approximation of the segmentation. This coarse predicted mask is upsampled and
used as the template mask M

′
for I

′
. I

′
and M

′
are fitted into another TPSN to

output the predicted segmentation mask for I
′
. The predicted mask is upsampled

to M , which is fitted into a TPSN with I to obtain the final segmentation result.
Such a multi-level strategy allows our model to gradually extract features

from the image from coarse to fine. A predicted mask is used as the template
mask in the next TPSN layer, which is closer to the actual mask. As a result,
the algorithm is more robust, especially for structures with complex geometry
that are to be segmented. Experiment results show that this multi-level strategy
helps to improve the segmentation accuracy with higher segmentation scores.

4 Experiment

4.1 Implementation Details

The implementation details are described in this section. We compare our methods
with the baseline UNet, as well as the UNet model with connected component
analysis (CCA)[4][6] For UNet with CCA, the simply-connected component with
the largest area is chosen as the segmentation result to obtain a simply-connected
segmentation result. The UNet model with connected component analysis is
denoted by UNet(cca). The experiments of TEDSNet are carried out using the
released code of [15].

Dataset We evaluate TPSN and mlTPSN on two datasets, namely, Ham10000[14,13]
and KiTS21[4]. Most of the masks provided in Ham10000 are simply connected,
which is suitable to evaluate the capability of our method for 2D segmentation.
Among 10015 pairs of images and masks in Ham10000, we divide them into 9000
pairs for training and 1015 pairs for testing. All images are downsampled to
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Fig. 2: Segmentation results comparison for Ham10000

128 × 128 in both the training and testing process. KiTS21 provides segmen-
tation masks for two instances of Kidney annotation, where the connectedness
of individuals is strictly preserved. Restricting one continuous mask region is a
reliable and practical prior and post-processing strategy. Amongst 300 cases, we
employ 210 cases for training and the other 70 cases for testing. All the masks
and volume images are normalized into the same spacing and downsampled into
a size of 64 × 128 × 128 after the center is cropped into the same depth. The
intensity of images is normalized to [0, 1].
Resources and Parameters All models are trained for 300 epochs with a
learning rate of 0.00001 using RMSprop optimizer. The model for 2-dimensional
image segmentation is trained with a minibatch of 64 on a CentOS 7 central
cluster computing node with one 64GB, 2.4GHz Intel Xeon E5-2680 CPU, and
one GeForce GTX 1080 Ti GPU. 3-dimensional volume image segmentation
models are trained with a minibatch of 8 images on a node with one 2.4GHz
Intel Xeon E5-2680 CPU, and eight GeForce GTX 1080 Ti GPU. The weighting
parameters λDice, λdice and λjac are set to be 1.0,1.0 and 0.1 respectively.

4.2 Experiments on 2D Segmentation

Method Dice Best
UNet 93.50± 0.29 93.79

UNet(cca) 93.63± 0.29 93.92
TEDSNet 89.91± 0.27 90.18

TPSN 93.77± 0.37 94.14
mlTPSN 94.42± 0.39 94.81

Table 1: Result on Ham10000

Method Dice Best
UNet 92.76± 0.38 93.14

UNet(cca) 92.81± 0.38 93.19
TEDSNet 87.67± 0.29 88.06

TPSN 92.73± 0.48 93.21
mlTPSN 93.17± 0.41 93.58

Table 2: Result on KiTS21

We conduct experiments on the Ham10000 dataset to validate the capability
of TPSN on labeling continuous masks for 2D images. The results are reported
in Table.1. Compared to UNet segmentation model based on a pixel-wise classi-
fication, our methods achieve a better result with 94.14% best Dice. Moreover,
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mlTPSN achieve a significantly better score with 1.02% higher by Dice (93.79%
to 94.81%) than UNet. Using connected component analysis to correct the topo-
logical error, the scores are improved to 93.92% by Dice score for the baseline
UNet. The results produced by TEDSNet can give a correct topological structure.
However, they are not precise and obtain only 90.18% best Dice score.

Figure 2 shows the qualitative visualization. Both TPSN and mlTPSN can
avoid topological errors in the first row. As for the results in the second and third
rows, the boundaries of the masks predicted by mlTPSN are evidently closer to
the ground truth. It demonstrates the effectiveness of the multi-level strategy.

4.3 Experiments on 3D Segmentation

We also test the TPSN and ml-TPSN on KiTS21 dataset to segment the 3D
kidney. The experimental results are reported in this subsection.

Fig. 3: 3D Segmentation comparison for KiTS21

Figure 3 shows the qualitative visualization results. The masks predicted by
our methods are free of outliers and topological errors. On the contrary, the UNet
segmentation model mislabels the right kidney while the task is to segment the
left one. The quantitative results are reported in Table 2. TPSN achieves a higher
score by Dice score, which is 93.21%. Furthermore, our mlTPSN achieves the
best result with 93.62% by Dice. It outperforms all other approaches, including
the baseline UNet, UNet with connected component analysis, and TEDSNet.
Dataset with Information Loss We also test our models on images with
corruption and information loss. This may be brought by patients’ movements
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Fig. 4: Segmentation results comparison for KiTS21

Fig. 5: 3D Segmentation results comparison for special cases

or device faults of the scanner. In this experiment, we assume the intensity
information has been lost for some slices in the 3D image. It is simulated by
setting the intensity value of some slices in the volume image of a subject to be
zero. The corrupted image is then fitted into the trained network without any
further processing. The result is illustrated in Figure 5. It is observed that the
result obtained by TPSN is free of topological errors, even though the mask is
shrunk a bit compared to the ground truth. On the contrary, both UNet and
UNet(cca) fail to give accurate results. It demonstrates the robustness of our
proposed models.

5 Conclusion

In this work, we proposed a novel learning-based segmentation framework for both
2D and 3D images that guarantees to preserve the prescribed topology. The main
idea is to train a UNet that predicts a diffeomorphic mapping, which registers a
template mask to the ground truth. Experimental results show that our methods
outperform other methods. Our framework can also be easily incorporated with
other architecture to obtain better results.
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